Skip to main content

Part of the book series: Computational Fluid and Solid Mechanics ((COMPFLUID))

  • 2909 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karniadakis G, Beskok A, Narayan A. Microflows and Nanoflows: Fundamentals and Simulation. New York: Spinger-Verlag, 2002.

    Google Scholar 

  2. Tzou DY. Macro-to-Microscale Heat Transfer. Washington D.C.: Taylor & Francis, 1997.

    Google Scholar 

  3. Reitz JR, Milford FJ, Christy RW. Foundations of Electromagnetic Theory. Reading MA: Addison-Wesley, 1992.

    Google Scholar 

  4. Qiu TQ, Tien CL. Short-Pulse Laser Heating on Metals. Int. J. Heat Mass Transf. 1992, 35: 2799–2808.

    Article  Google Scholar 

  5. Xu B, Li BQ. Finite Element Solution of Non-Fourier Thermal Wave Problems. Numer. Heat Transf. Part B. 2003; 44: 45–60.

    MathSciNet  Google Scholar 

  6. Ai X, Li BQ. A Discontinuous Finite Element Method for Hyperbolic Thermal Wave Problems. J. Eng. Comput. 2004; 21(6): 577–597.

    Article  MATH  MathSciNet  Google Scholar 

  7. Majumdar, A. Microscale Heat Conduction in Dielectric Films. ASME J. Heat Transf. 1993; 117: 7–16.

    Article  Google Scholar 

  8. Bassi F, Rebay S. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations. J. Comput. Phys. 1997; 131: 267–279.

    Article  MathSciNet  MATH  Google Scholar 

  9. Arnold DN, Brezzi F, Cockburn B, Marini LD. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems. SIAM J. Numer. Anal. 2002; 39(5): 1749–1779.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chapman S, Cowling TG. The Mathematical Theory of Non-Uniform Gases. London: Cambridge University Press, 1970.

    Google Scholar 

  11. Roy S, Raju R, Chuang HF, Cruden BA, Meyyappan M. Modeling of Gas Flow Through Microchannels and Nanopores. J. App. Phys. 2003; 93(8): 4870–4879.

    Article  Google Scholar 

  12. Maxwell JC. Philos. Trans. R. Soc. London. 1879; 170: 231–235.

    MATH  Google Scholar 

  13. Dadzie SK, Méolans JG. Anisotropic Scattering Kernel: Generalized and Modified Maxwell Boundary Conditions. J. Math. Phys. 2004; 45(5): 1804–1809.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sakiyama Y, Takagi S, Matsumoto Y. Multiscale Analysis of Nonequilibrium Rarefied Gas Flows with the Application to Silicon Thin Film Process Employing Supersonic Jet. Phys. Fluids 2004; 16(5): 1620 1626.

    Google Scholar 

  15. Isihara A. Statistical Physics. New York: Academic Press, 1971.

    Google Scholar 

  16. Kubo R, Toda M, Hashitsume N. Statistical Physics II: Nonequilibrium Statistical Mechanics. Berlin: Springer-Verlag, 1991.

    MATH  Google Scholar 

  17. Cercignani C. Theory and Application of the Boltzmann Equation. Scotland: Scottish Academic Press, 1975.

    MATH  Google Scholar 

  18. Harris S. An Introduction to the Theory of the Boltzmann Equation. Austin: Holt, Rinehart and Winston, 1970.

    Google Scholar 

  19. Siewert CE. Viscous-Slip, Thermal-Slip, and Temperature-Jump Coefficients as Defined by the Linearized Boltzmann Equation and the Cercignani—Lampis Boundary Condition. Phys. Fluids 2003; 15(6): 1696–1702.

    Article  MathSciNet  Google Scholar 

  20. Kosuge S, Aoki K, Takata S. Heat Transfer in a Gas Mixture Between Two Parallel Plates: Finite-Difference Analysis of the Boltzmann Equation. AIP Conf. Proc. 2001; 585(1): 289–296.

    Article  Google Scholar 

  21. Christlieb AJ, Hitchon WNG, Sun Q, Boyd ID. Application of the Transition Probability Matrix Method to High Knudsen Number Flow Past a Micro-Plate. AIP Conf. Proc. 2003; 663(1): 768–773.

    Article  Google Scholar 

  22. Aristov VV. Methods of Direct Solving the Boltzmann Equation and Study of Nonequilibrium Flows. The Netherlands: Kluwer Academic Publishers, 2001.

    MATH  Google Scholar 

  23. Bhatnagar PL, Gross EP, Krook M. A Model for Collision Processes in Gases I: Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 1954; 94(3): 511–525.

    Article  MATH  Google Scholar 

  24. Shan X, Chen H. Lattice Boltzmann Model for Simulating Flow with Multiple Phases and Components. Phys. Rev. E. 1993; 47: 1815–1819.

    Article  Google Scholar 

  25. Martys NS, Shan X, Chen H. Evaluation of the External Force Term in the Discrete Boltzmann Equations. Phys. Rev. E. 1998; 58: 6855–6857.

    Article  Google Scholar 

  26. Chen S, Doolen GD. Lattice Boltzmann Method for Fluid Flows. Annu. Rev. Fluid Mech. 1998; 30: 329–364.

    Article  MathSciNet  Google Scholar 

  27. Chen S, Chen HD, Martinez D, Mattheus W. Lattice Boltzmann Model for Simulation of Magnetohydrodynamics. Phys. Rev. Lett. 1991; 67: 3776–3779.

    Article  Google Scholar 

  28. Grad, H. (1949) Note on N-Dimensional Hermite Polynomials. Commun. Pure Appl. Math. 1949; 2: 331–336.

    MATH  MathSciNet  Google Scholar 

  29. Shan, X. and He, X. Discretization of the Velocity Space in the Solution of the Boltzmann Equation. Phy. Rev. Letters. 1998; 80: 65–68.

    Article  Google Scholar 

  30. Chen S, Wang Z, Shan X, Doolen GD. Lattice Boltzmann Computational Fluid Dynamics in Three Dimensions. J. Stat. Phys. 1992; 68: 379–400.

    Article  MathSciNet  MATH  Google Scholar 

  31. Luo LS. Unified Theory of the Lattice Boltzmann Models for Nonideal Gases. Phys. Re. Lett. 1998; 81(8): 1618–1621.

    Article  Google Scholar 

  32. He X, Luo L. A Priori Derivation of the Lattice Boltzmann Equation. Phy. Rev. E. 1997; 55: R6333–R6336.

    Article  Google Scholar 

  33. He X, Luo L. Theory of the Lattice Boltzmann Method: from the Boltzmann Equation to the Lattice Boltzmann Equation. Phy. Rev. E. 1997; 55: R6333–R6336.

    Article  Google Scholar 

  34. Cao N, Chen S, Jin S, Martinez D. Physical Symmetry and Lattice Symmetry in the Lattice Boltzmann Method. Phys. Rev. E. 1996; 55: R21–R24.

    Article  Google Scholar 

  35. Qian D. Bubble Motion, Deformation and Breakup in Stirred Tanks. Ph.D. Thesis. New York: Clarkson University, 2003.

    Google Scholar 

  36. Ziegler DP. Boundary Conditions for Lattice Boltzmann Simulations. J. Stat. Phys. 1993; 71: 1171–77.

    Article  MATH  Google Scholar 

  37. Goldstein D, Handler R, Sirovich L. Modeling a No-slip Flow Boundary with an External Force Field. J. Comput. Phys. 1993; 105: 354–366.

    Article  MATH  Google Scholar 

  38. Eggels JGM, Somers JA. Numerical Simulation of Free Convective Flow Using the Lattice-Boltzmann Scheme. Int. J. Heat Fluid Flow, 1995; 16: 357–364.

    Article  Google Scholar 

  39. Derksen JJ, Van den Akker HEA. Large Eddy Simulations on the Flow Driven by a Rushton Turbine. AIChE J. 1999; 45: 209–221.

    Article  Google Scholar 

  40. Ladd AJC. Numerical Simulation of Particulate Suspensions via a Discretized Boltzmann Equation, Part 1: Theoretical Foundation. J. Fluid Mech. 1994; 271: 285–309.

    Article  MATH  MathSciNet  Google Scholar 

  41. Ladd AJC. Numerical Simulation of Particulate Suspensions via a Discretized Boltzmann Equation, Part 2: Numerical Results. J. Fluid Mech. 1994; 271: 311–339.

    Article  MathSciNet  Google Scholar 

  42. Shi X, Lin J, Yu Z. Discontinuous Galerkin Spectral Element Lattice Boltzmann Method on Triangular Element. Int. J. Numer. Meth. Fluids 2003; 42: 1249–1261.

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2006). Micro and Nanoscale Fluid Flow and Heat Transfer. In: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Computational Fluid and Solid Mechanics. Springer, London. https://doi.org/10.1007/1-84628-205-5_11

Download citation

  • DOI: https://doi.org/10.1007/1-84628-205-5_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-988-3

  • Online ISBN: 978-1-84628-205-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics