Skip to main content

Assessment of Coronary Artery Disease with Cardiac PET/CT

  • Chapter
Positron Emission Tomography
  • 2317 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Di Carli MF. Advances in positron emission tomography. J Nucl Cardiol 2004;11:719–732.

    Article  PubMed  Google Scholar 

  2. Schelbert HR, Phelps ME, Huang SC, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation 1981;63:1259–1272.

    PubMed  CAS  Google Scholar 

  3. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032–1042.

    PubMed  CAS  Google Scholar 

  4. Schelbert HR. Evaluation of myocardial blood flow in cardiac disease. In: Skorton DJ, Schelbert HR, Wolf GL, Brundage BH, editors. Cardiac Imaging. A Companion to Braunwald’s Heart Disease. Philadelphia: Saunders, 1991:1093–1112.

    Google Scholar 

  5. Selwyn AP, Allan RM, L’Abbate A, et al. Relation between regional myocardial uptake of rubidium-82 and perfusion: absolute reduction of cation uptake in ischemia. Am J Cardiol 1982;50:112–121.

    Article  PubMed  CAS  Google Scholar 

  6. Mullani NA, Goldstein RA, Gould KL, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 1983;24:898–906.

    PubMed  CAS  Google Scholar 

  7. Goldstein RA, Mullani NA, Marani SK, Fisher DJ, Gould KL, O’Brien HA Jr. Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacologic interventions. J Nucl Med 1983;24:907–915.

    PubMed  CAS  Google Scholar 

  8. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996;37:1701–1712.

    PubMed  CAS  Google Scholar 

  9. Smits P, Thien T. Cardiovascular effects of sulphonylurea derivatives. Implications for the treatment of NIDDM? Diabetologia 1995;38:116–121.

    Article  PubMed  CAS  Google Scholar 

  10. Buus NH, Bottcher M, Hermansen F, Sander M, Nielsen TT, Mulvany MJ. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia. Circulation 2001;104:2305–2310.

    PubMed  CAS  Google Scholar 

  11. Czernin J, Barnard RJ, Sun KT, et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation 1995;92:197–204.

    PubMed  CAS  Google Scholar 

  12. Guethlin M, Kasel AM, Coppenrath K, Ziegler S, Delius W, Schwaiger M. Delayed response of myocardial flow reserve to lipidlowering therapy with fluvastatin. Circulation 1999;99:475–481.

    PubMed  CAS  Google Scholar 

  13. Yokoyama I, Momomura S, Ohtake T, et al. Improvement of impaired myocardial vasodilatation due to diffuse coronary atherosclerosis in hypercholesterolemics after lipid-lowering therapy. Circulation 1999;100:117–122.

    PubMed  CAS  Google Scholar 

  14. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 1988;77:43–52.

    PubMed  CAS  Google Scholar 

  15. Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium [see comments]. J Am Coll Cardiol 1989;14:1181–1190.

    Article  PubMed  CAS  Google Scholar 

  16. Zeiher AM, Drexler H, Wollschlager H, Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991;84:1984–1992.

    PubMed  CAS  Google Scholar 

  17. Kichuk MR, Seyedi N, Zhang X, et al. Regulation of nitric oxide production in human coronary microvessels and the contribution of local kinin formation. Circulation 1996;94:44–51.

    PubMed  CAS  Google Scholar 

  18. Campisi R, Di Carli MF. Assessment of coronary flow reserve and microcirculation: a clinical perspective. J Nucl Cardiol 2004;11:3–11.

    Article  PubMed  Google Scholar 

  19. Schindler TH, Hornig B, Buser PT, et al. Prognostic value of abnormal vasoreactivity of epicardial coronary arteries to sympathetic stimulation in patients with normal coronary angiograms. Arterioscler Thromb Vasc Biol 2003;23:495–501.

    Article  PubMed  CAS  Google Scholar 

  20. Schindler TH, Nitzsche EU, Munzel T, et al. Coronary vasoregulation in patients with various risk factors in response to cold pressor testing: contrasting myocardial blood flow responses to short-and long-term vitamin C administration. J Am Coll Cardiol 2003;42:814–822.

    Article  PubMed  Google Scholar 

  21. Halcox JP, Schenke WH, Zalos G, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002;106:653–658.

    Article  PubMed  Google Scholar 

  22. Schachinger V, Zeiher AM. Prognostic implications of endothelial dysfunction: does it mean anything? Coron Artery Dis 2001;12:435–443.

    Article  PubMed  CAS  Google Scholar 

  23. Al Suwaidi J, Reddan DN, Williams K, et al. Prognostic implications of abnormalities in renal function in patients with acute coronary syndromes. Circulation 2002;106:974–980.

    Article  PubMed  Google Scholar 

  24. Baller D, Notohamiprodjo G, Gleichmann U, Holzinger J, Weise R, Lehmann J. Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation 1999;99:2871–2875.

    PubMed  CAS  Google Scholar 

  25. Janatuinen T, Laaksonen R, Vesalainen R, et al. Effect of lipid-lowering therapy with pravastatin on myocardial blood flow in young mildly hypercholesterolemic adults. J Cardiovasc Pharmacol 2001;38:561–568.

    Article  PubMed  CAS  Google Scholar 

  26. Huggins GS, Pasternak RC, Alpert NM, Fischman AJ, Gewirtz H. Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reverse. Circulation 1998;98:1291–1296.

    PubMed  CAS  Google Scholar 

  27. Yokoyama I, Yonekura K, Inoue Y, Ohtomo K, Nagai R. Long-term effect of simvastatin on the improvement of impaired myocardial flow reserve in patients with familial hypercholesterolemia without gender variance. J Nucl Cardiol 2001;8:445–451.

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz RG, Pearson TA, Kalaria VG, et al. Prospective serial evaluation of myocardial perfusion and lipids during the first six months of pravastatin therapy: coronary artery disease regression single photon emission computed tomography monitoring trial. J Am Coll Cardiol 2003;42:600–610.

    Article  PubMed  CAS  Google Scholar 

  29. Go RT, Marwick TH, MacIntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease [see comments]. J Nucl Med 1990;31:1899–1905.

    PubMed  CAS  Google Scholar 

  30. Stewart RE, Schwaiger M, Molina E, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67:1303–1310.

    Article  PubMed  CAS  Google Scholar 

  31. Van Train KF, Garcia EV, Maddahi J, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994;35:609–618.

    PubMed  Google Scholar 

  32. Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944–1951.

    PubMed  Google Scholar 

  33. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782–1788.

    Article  PubMed  CAS  Google Scholar 

  34. Beanlands RS, Muzik O, Melon P, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 1995;26:1465–1475.

    Article  PubMed  CAS  Google Scholar 

  35. Yoshinaga K, Katoh C, Noriyasu K, et al. Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: A study using oxygen 15-labeled water PET. J Nucl cardiol 2003;10:275–283.

    Article  PubMed  Google Scholar 

  36. Parkash R, deKemp RA, Ruddy TDT, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440–449.

    Article  PubMed  CAS  Google Scholar 

  37. Ornish D, Brown SE, Scherwitz LW, et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial [see comments]. Lancet 1990;336:129–133.

    Article  PubMed  CAS  Google Scholar 

  38. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B [see comments]. N Engl J Med 1990;323:1289–1298.

    Article  PubMed  CAS  Google Scholar 

  39. Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. Jama 1990;264:3007–3012.

    Article  PubMed  CAS  Google Scholar 

  40. Gould KL, Ornish D, Scherwitz L, et al. Changes in myocardial perfusion abnormalities by positron emission tomography after longterm, intense risk factor modification [see comments]. JAMA 1995;274:894–901.

    Article  PubMed  CAS  Google Scholar 

  41. Watts GF, Lewis B, Brunt JN, et al. Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St Thomas’ Atherosclerosis Regression Study (STARS). Lancet 1992;339:563–569.

    Article  PubMed  CAS  Google Scholar 

  42. Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol 2002;75 (special):S24–S30.

    PubMed  Google Scholar 

  43. O’Rourke RA, Brundage BH, Froelicher VF, et al. American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol 2000;36:326–340.

    Article  PubMed  CAS  Google Scholar 

  44. Berman DS, Wong ND, Gransar H, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 2004;44:923–930.

    Article  PubMed  CAS  Google Scholar 

  45. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228:826–833.

    PubMed  Google Scholar 

  46. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004;109:14–17.

    Article  PubMed  Google Scholar 

  47. Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–2711.

    Article  PubMed  CAS  Google Scholar 

  48. Schoepf UJ, Becker CR, Ohnesorge BM, Yucel EK. CT of coronary artery disease. Radiology 2004;232:18–37.

    PubMed  Google Scholar 

  49. Achenbach S, Moshage W, Ropers D, Nossen J, Daniel WG. Value of electron-beam computed tomography for the noninvasive detection of high-grade coronary-artery stenoses and occlusions. N Engl J Med 1998;339:1964–1971.

    Article  PubMed  CAS  Google Scholar 

  50. Achenbach S, Giesler T, Ropers D, et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation 2001;103:2535–2538.

    PubMed  CAS  Google Scholar 

  51. Nieman K, Oudkerk M, Rensing BJ, et al. Coronary angiography with multi-slice computed tomography. Lancet 2001;357:599–603.

    Article  PubMed  CAS  Google Scholar 

  52. Becker CR, Knez A, Leber A, et al. Detection of coronary artery stenoses with multislice helical CT angiography. J Comput Assist Tomogr 2002;26:750–755.

    Article  PubMed  Google Scholar 

  53. Kopp AF, Schroeder S, Kuettner A, et al. Non-invasive coronary angiography with high resolution multidetector-row computed tomography. Results in 102 patients. Eur Heart J 2002;23:1714–1725.

    PubMed  CAS  Google Scholar 

  54. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 2002;106:2051–2054.

    Article  PubMed  Google Scholar 

  55. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 2003;107:664–666.

    Article  PubMed  Google Scholar 

  56. Marwick TH, Nemec JJ, Stewart WJ, Salcedo EE. Diagnosis of coronary artery disease using exercise echocardiography and positron emission tomography: comparison and analysis of discrepant results. J Am Soc Echocardiogr 1992;5:231–238.

    PubMed  CAS  Google Scholar 

  57. Grover-McKay M, Ratib O, Schwaiger M, et al. Detection of coronary artery disease with positron emission tomography and rubidium-82. Am Heart J 1992;123:646–652.

    Article  PubMed  CAS  Google Scholar 

  58. Demer LL, Gould KL, Goldstein RA, et al. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 1989;79:825–835.

    PubMed  CAS  Google Scholar 

  59. Tamaki N, Yonekura Y, Senda M, et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 1988;29:1181–1188.

    PubMed  CAS  Google Scholar 

  60. Gould KL, Goldstein RA, Mullani NA, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 1986;7:775–789.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Di Carli, M.F. (2006). Assessment of Coronary Artery Disease with Cardiac PET/CT. In: Valk, P.E., Delbeke, D., Bailey, D.L., Townsend, D.W., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London . https://doi.org/10.1007/1-84628-187-3_27

Download citation

  • DOI: https://doi.org/10.1007/1-84628-187-3_27

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-971-5

  • Online ISBN: 978-1-84628-187-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics