Skip to main content

PET in Clinical Cardiology

  • Chapter
Book cover Positron Emission Tomography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Non-invasive quantitation of myocardial blood flow in human subjects with oxygen-15 labeled water and positron emission tomography. J Am Coll Cardiol 1989;14:639–652.

    PubMed  CAS  Google Scholar 

  2. Hutchins G, Schwaiger M, Rosenspire K, Krivokapich J, Schelbert H, Kuhl D. Noninvasive quantification of regional myocardial blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032.

    PubMed  CAS  Google Scholar 

  3. Kuhle WG, Porenta G, Huang SC, et al. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 1992;86:1004–1017.

    PubMed  CAS  Google Scholar 

  4. Gambhir SS, Schwaiger M, Huang SC, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989;30:359–366.

    PubMed  CAS  Google Scholar 

  5. Bax JJ, Valkema R, Visser FC, et al. FDG SPECT in the assessment of myocardial viability. Comparison with dobutamine echo. Eur Heart J 1997;18(suppl D):D124–D129.

    PubMed  Google Scholar 

  6. Nowak B, Zimny M, Schwarz ER, et al. Diagnosis of myocardial viability by dual-head coincidence gamma camera fluorine-18 fluorodeoxyglucose positron emission tomography with and without non-uniform attenuation correction. Eur J Nucl Med. 2000;27:1501–1508

    PubMed  CAS  Google Scholar 

  7. Bax J, Patton J, Poldermans D, Elhendy A, Sandler M. 18-Fluorodeoxyglucose imaging with positron emission tomography and single photon emission computed tomography: cardiac applications. Semin Nucl Med 2000;30:281–298.

    PubMed  CAS  Google Scholar 

  8. Inubushi M, Jordan MC, Roos KP, et al. Nitrogen-13 ammonia cardiac positron emission tomography in mice: effects of clonidine-induced changes in cardiac work on myocardial perfusion. Eur J Nucl Med Mol Imaging 2004;31:110–116.

    PubMed  Google Scholar 

  9. Gould K, Goldstein R, Mullani N, et al. Clinical feasibility, sensitivity and specifically of positron cardiac imaging without a cyclotron using generator produced Rb-82 for the diagnosis of coronary artery disease. J Nucl Med 1986;27:976.

    Google Scholar 

  10. Schelbert HR, Wisenberg G, Phelps ME, et al. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation: VI. Detection of coronary artery disease in man with intravenous 13-NH3 and positron computed tomography. Am J Cardiol 1982;49:1197–1207.

    PubMed  CAS  Google Scholar 

  11. Tamaki N, Yonekura Y, Senda M, et al. Myocardial positron computed tomography with 13N-ammonia at rest and during exercise. Eur J Nucl Med 1985;11:246–251.

    PubMed  CAS  Google Scholar 

  12. Schelbert HR. Positron emission tomography and the changing paradigm in coronary artery disease. Z Kardiol 2000;89(suppl 4):IV55–IV60.

    PubMed  Google Scholar 

  13. Bacharach SL, Bax JJ, Case J, et al. PET myocardial glucose metabolism and perfusion imaging. Part 1: Guidelines for data acquisition and patient preparation. J Nucl Cardiol 2003;10:543–556.

    PubMed  Google Scholar 

  14. Schelbert HR, Beanlands R, Bengel F, et al. PET myocardial perfusion and glucose metabolism imaging. Part 2: Guidelines for interpretation and reporting. J Nucl Cardiol 2003;10:557–571.

    PubMed  Google Scholar 

  15. Buus NH, Bottcher M, Hermansen F, Sander M, Nielsen TT, Mulvany MJ. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia. Circulation 2001;104:2305–2310.

    PubMed  CAS  Google Scholar 

  16. Campisi R, Czernin J, Schoder H, et al. Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation 1998;98:119–125.

    PubMed  CAS  Google Scholar 

  17. Meeder JG, Peels HO, Blanksma PK, et al. Comparison between positron emission tomography myocardial perfusion imaging and intracoronary Doppler flow velocity measurements at rest and during cold pressor testing in angiographically normal coronary arteries in patients with one-vessel coronary artery disease. Am J Cardiol 1996;78:526–531.

    PubMed  CAS  Google Scholar 

  18. Schoder H, Silverman DH, Campisi R, et al. Regulation of myocardial blood flow response to mental stress in healthy individuals. Am J Physiol Heart Circ Physiol 2000;278:H360–H366.

    PubMed  CAS  Google Scholar 

  19. Schwaiger M, Melin J. Cardiological applications of nuclear medicine. Lancet 1999;354:661–666.

    PubMed  CAS  Google Scholar 

  20. Marwick T, Shan K, Patel S, Go R, Lauer M. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 1997;80:865–870.

    PubMed  CAS  Google Scholar 

  21. Patterson RE, Eisner RL, Horowitz SF. Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation 1995;91:54–65.

    PubMed  CAS  Google Scholar 

  22. Muzik O, Duvernoy C, Beanlands R, et al. Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented CAD by means of nitrogen-13 ammonia and using PET. J Am Coll Cardiol 1998;31:534–540.

    PubMed  CAS  Google Scholar 

  23. Czernin J, Barnard RJ, Sun KT, et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation 1995;92:197–204.

    PubMed  CAS  Google Scholar 

  24. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808–817.

    PubMed  CAS  Google Scholar 

  25. DiCarli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944–1951.

    CAS  Google Scholar 

  26. Pitkanen O, Raitakari O, Niinikoski H, et al. Coronary flow reserve is impaired in young men with familial hypercholesterolemia. J Am Coll Cardiol 1996;28:1705–1711.

    PubMed  CAS  Google Scholar 

  27. Pitkanen O, Nuutila P, Raitakari O, et al. Coronary flow reserve is reduced in young men with IDDM. Diabetes 1998;47:248–254.

    PubMed  CAS  Google Scholar 

  28. Momose M, Abletshauser C, Neverve J, et al. Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus. Eur J Nucl Med 2002;29:1675–1679.

    Google Scholar 

  29. Uren NG, Camici PG, Melin JA, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med 1995;36:2032–2036.

    PubMed  CAS  Google Scholar 

  30. Czernin J, Muller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993;88:62–69.

    PubMed  CAS  Google Scholar 

  31. Kaufmann P, Gnecchi-Ruscone T, Schafers K, Luscher T, Camici P. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol 2000;36:103–109.

    PubMed  CAS  Google Scholar 

  32. Czernin J, Sun K, Brunken R, Bottcher M, Phelps M, Schelbert H. Effect of acute and long-term smoking on myocardial blood flow and flow reserve. Circulation 1995;91:2891–2897.

    PubMed  CAS  Google Scholar 

  33. Campisi R, Czernin J, Schoder H, Sayre J, Schelbert H. L-Arginine normalizes coronary vasomotion in long-term smokers. Circulation 1999;99:491–497.

    PubMed  CAS  Google Scholar 

  34. Yokoyama I, Momomura S, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1997;30:1472–1477.

    PubMed  CAS  Google Scholar 

  35. Yokoyama I, Ohtake T, Momomura S, et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 1998;47:119–124.

    PubMed  CAS  Google Scholar 

  36. Pitkanen OP, Nuutila P, Raitakari OT, et al. Coronary flow reserve is reduced in young men with IDDM. Diabetes 1998;47:248–254.

    PubMed  CAS  Google Scholar 

  37. Sundell J, Nuutila P, Laine H, et al. Dose-dependent vasodilating effects of insulin on adenosine-stimulated myocardial blood flow. Diabetes 2002;51:1125–1130.

    PubMed  CAS  Google Scholar 

  38. Gould KL, Martucci JP, Goldberg DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease: a potential noninvasive marker of healing coronary endothelium. Circulation 1994;89:1530–1538.

    PubMed  CAS  Google Scholar 

  39. Gould KL, Ornish D, Scherwitz L, et al. Changes in myocardial perfusion abnormalities by positron emission tomography after long-term, intense risk factor modification. JAMA 1995;274:894–901.

    PubMed  CAS  Google Scholar 

  40. Kaufmann P, Gnecchi-Ruscone T, di Terlizzi M, Schafers K, Luscher T, Camici P. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation 2000;102:1233–1238.

    PubMed  CAS  Google Scholar 

  41. Parodi O, Neglia D, Sambuceti G, Marabotti C, Palombo C, Donato L. Regional myocardial blood flow and coronary reserve in hypertensive patients. The effect of therapy. Drugs 1992;1:48–55.

    Google Scholar 

  42. Guethlin M, Kasel AM, Coppenrath K, Ziegler S, Delius W, Schwaiger M. Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation 1999;99:475–481.

    PubMed  CAS  Google Scholar 

  43. Campisi R, Nathan L, Pampaloni MH, et al. Noninvasive assessment of coronary microcirculatory function in postmenopausal women and effects of short-term and long-term estrogen administration. Circulation 2002;105:425–430.

    PubMed  CAS  Google Scholar 

  44. Duvernoy CS, Rattenhuber J, Seifert-Klauss V, Bengel F, Meyer C, Schwaiger M. Myocardial blood flow and flow reserve in response to short-term cyclical hormone replacement therapy in postmenopausal women. J Gend Specif Med 2001;4:21–27, 47.

    PubMed  CAS  Google Scholar 

  45. Kaul T, Agnohotri A, Fields B, Riggins L, Wyatt D, Jones C. Coronary artery bypass grafting in patients with an ejection fraction of twenty percent or less. J Thorac Cardiovasc Surg 1996;111:1001–1012.

    PubMed  CAS  Google Scholar 

  46. Miller D, Stinson E, Alderman E. Surgical treatment of ischemic cardiomyopathy: is it ever too late? Am J Surg 1981;141:688–693.

    PubMed  CAS  Google Scholar 

  47. Mickleborough L, Maruyama H, Takagi Y, Mohammed S, Sun Z, Ebisuzaki L. Results of revascularization in patients with severe left ventricular dysfunction. Circulation 1995;92:73–79.

    Google Scholar 

  48. Luciani G, Faggian T, Razzolini R, Livi U, Bortoletti U, Mazzucco A. Severe ischemic left ventricular failure: coronary operation or heart transplantation. Ann Thorac Surg 1993;55:719–723.

    PubMed  CAS  Google Scholar 

  49. Passamani E, Davis KB, Gillespie MJ, Killip T, Piata C. A randomized trial of coronary artery bypass surgery: survival of patients with a low ejection fraction. N Engl J Med 1985;312:1665–1671.

    PubMed  CAS  Google Scholar 

  50. Wijns W, Vatner S, Camici P. Hibernating myocardium. N Engl J Med 1998;339:173–181.

    PubMed  CAS  Google Scholar 

  51. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989;117:211–221.

    PubMed  CAS  Google Scholar 

  52. Diamond G, Forrester J, de Luz P, Wyatt H, Swan H. Post extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart 1978;95:204–209.

    CAS  Google Scholar 

  53. Dyke S, Cohn R, Gorlin R, Sonnenblick E. Detection of residual myocardial function in coronary artery disease using post-extra systolic potentiation. Circulation 1974;50:694–699.

    PubMed  CAS  Google Scholar 

  54. Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 1997;30:1451–1460.

    PubMed  CAS  Google Scholar 

  55. Kloner R, Bolli R, Marban E, Reinlib L, Braunwald E. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI Workshop. Circulation 1998;97:1848–1867.

    PubMed  CAS  Google Scholar 

  56. Heyndricks GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975;56:978–985.

    Google Scholar 

  57. Bolli R. Myocardial’ stunning’ in man. Circulation 1992;86:1671–1691.

    PubMed  CAS  Google Scholar 

  58. Kloner RA, Allen J, Cox TA, Zheng Y, Ruiz CE. Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease. Am J Cardiol 1991;68:329–334.

    PubMed  CAS  Google Scholar 

  59. Heusch G. Hibernating myocardium. Physiol Rev 1998;78:1055–1085.

    PubMed  CAS  Google Scholar 

  60. Els‰sser A, Schlepper M, Klovekorn WP, et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 1997;96:2920–2931.

    Google Scholar 

  61. Schwarz ER, Schoendube FA, Kostin S, et al. Prolonged myocardial hibernation exacerbates cardiomyocyte degeneration and impairs recovery of function after revascularization. J Am Coll Cardiol 1998;31:1018–1026.

    PubMed  CAS  Google Scholar 

  62. Depre C, Vanoverschelde JL, Gerber B, Borgers M, Melin JA, Dion R. Correlation of functional recovery with myocardial blood flow, glucose uptake, and morphologic features in patients with chronic left ventricular ischemic dysfunction undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 1997;113:371–378.

    PubMed  CAS  Google Scholar 

  63. Vanoverschelde JL, Wijns W, Depre C, et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993;87:1513–1523.

    PubMed  CAS  Google Scholar 

  64. Iida H, Tamura Y, Kitamura K, Bloomfield P, Eberl S, Ono Y. Histochemical correlates of 15O-water-perfusable tissue fraction in experimental canine studies of old myocardial infarction. J Nucl Med 2000;41:1737–1745.

    PubMed  CAS  Google Scholar 

  65. Yamamoto Y, de Silva R, Rhodes C, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation 1992;86:167–178.

    PubMed  CAS  Google Scholar 

  66. Haas F, Augustin N, Holper K, et al. Time course and extent of improvement of dysfunctioning myocardium in patients with coronry artery disease and severely depressed left ventricular function after revascularization: correlation with positron emission tomographic findings. J Am Coll Cardiol 2000;36:1927–1934.

    PubMed  CAS  Google Scholar 

  67. Gewirtz H, Fischman AJ, Abraham S, Gilson M, Strauss HW, Alpert NM. Positron emission tomographic measurements of absolute regional myocardial blood flow permits identification of nonviable myocardium in patients with chronic myocardial infarction. J Am Coll Cardiol 1994;23:851–859.

    PubMed  CAS  Google Scholar 

  68. Krivokapich J, Huang SC, Selin CE, Phelps ME. Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart. Am J Physiol 1987;252:H777–H787.

    PubMed  CAS  Google Scholar 

  69. Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–1262.

    PubMed  CAS  Google Scholar 

  70. Knuuti MJ, Yki-Jarvinen H, Voipio-Pulkki LM, et al. Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med 1994;35:989–998.

    PubMed  CAS  Google Scholar 

  71. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of the heart muscle. Annu Rev Physiol 1974;36:412–459.

    Google Scholar 

  72. Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging 2002;29:1257–1266.

    PubMed  Google Scholar 

  73. Berry JJ, Baker JA, Pieper KS, Hanson MW, Hoffman JM, Coleman RE. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers. J Nucl Med 1991;32:1518–1525.

    PubMed  CAS  Google Scholar 

  74. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979;237:E214–E223.

    PubMed  CAS  Google Scholar 

  75. Schinkel AF, Bax JJ, Valkema R, et al. Effect of diabetes mellitus on myocardial 18F-FDG SPECT using acipimox for the assessment of myocardial viability. J Nucl Med 2003;44:877–883.

    PubMed  Google Scholar 

  76. Schroder O, Hor G, Hertel A, Baum RP. Combined hyperinsulinaemic glucose clamp and oral acipimox for optimizing metabolic conditions during 18F-fluorodeoxyglucose gated PET cardiac imaging: comparative results. Nucl Med Commun 1998;19:867–874.

    PubMed  CAS  Google Scholar 

  77. Stone CK, Holden JE, Stanley W, Perlman SB. Effect of nicotinic acid on exogenous myocardial glucose utilization. J Nucl Med 1995;36:996–1002.

    PubMed  CAS  Google Scholar 

  78. Musatti L, Maggi E, Moro E, Valzelli G, Tamassia V. Bioavailability and pharmacokinetics in man of acipimox, a new antilipolytic and hypolipemic agent. J Int Med Res 1981;9:381–386.

    PubMed  CAS  Google Scholar 

  79. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–888.

    PubMed  CAS  Google Scholar 

  80. vom Dahl J, Eitzman DT, al-Aouar ZR, et al. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation 1994;90:2356–2366.

    Google Scholar 

  81. Gerber B, Melin J, Bol A, et al. Nitrogen-13-ammonia and oxygen-15-water estimates of absolute myocardial perfusion in left ventricular ischemic dysfunction. J Nucl Med 1998;39:1655–1662.

    PubMed  CAS  Google Scholar 

  82. Tamaki N, Yonekura Y, Yamashita K, et al. Value of rest-stress myocardial positron tomography using nitrogen-13-ammonia for the preoperative prediction of reversible asynergie. J Nucl Med 1989;30:1302–1310.

    PubMed  CAS  Google Scholar 

  83. Tamaki N, Ohtani H, Yamashita K, et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991;32:673–678.

    PubMed  CAS  Google Scholar 

  84. Marwick TH, MacIntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function, and metabolism. Circulation 1992;85:1347–1353.

    PubMed  CAS  Google Scholar 

  85. Lucignani G, Paolini G, Landoni C, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992;19:874–881.

    PubMed  CAS  Google Scholar 

  86. Gropler RJ, Geltman EM, Sampathkumaran K, et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;22:1587–1597.

    PubMed  CAS  Google Scholar 

  87. Carrel T, Jenni R, Haubold-Reuter S, von Schulthess G, Pasic M, Turina M. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg 1992;6:479–484.

    PubMed  CAS  Google Scholar 

  88. Schelbert HR. Assessment of myocardial viability with positron emission tomography. In: Iskandrian AE, van der Wall EE, editors. Myocardial Viability. Dordrecht: Kluwer, 2000:47–72.

    Google Scholar 

  89. Pagano D, Townend JN, Littler WA, Horton R, Camici PG, Bonser RS. Coronary artery bypass surgery as treatment for ichemic heart failure: the predictive value of viability assessment with quantitative positron emission tomography for symptomatic and functional outcome. J Thorac Cardiovasc Surg 1998;115:791–799.

    PubMed  CAS  Google Scholar 

  90. Vanoverschelde J, Depre C, Gerber B, et al. Time course of functional recovery after coronary artery bypass graft surgery in patients with chronic left ventricular ischemic dysfunction. Am J Cardiol. 2000;85:1432–1439.

    PubMed  CAS  Google Scholar 

  91. DiCarli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436–3444.

    CAS  Google Scholar 

  92. DiCarli MF, Davidson M, Little R, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527–533.

    CAS  Google Scholar 

  93. Eitzman D, Al-Aouar Z, Kanter H, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–565.

    PubMed  CAS  Google Scholar 

  94. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 2002;39:1151–1158.

    PubMed  Google Scholar 

  95. Beanlands R, Hendry P, Masters R, deKemp R, Woodend K, Ruddy T. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 1998;98(19 suppl):II51–II56.

    PubMed  CAS  Google Scholar 

  96. Pagano D, Lewis M, Townend J, Davies P, Camici P, Bonser R. Coronary revascularization for postischaemic heart failure: how myocardial viability affects survival. Heart 1999;82:684–688.

    PubMed  CAS  Google Scholar 

  97. Dreyfus GD, Duboc D, Blasco A, et al. Myocardial viability assessment in ischemic cardiomyopathy: benefits of coronary revascularization. Ann Thorac Surg 1994;57:1402–1407; discussion 1407–1408.

    PubMed  CAS  Google Scholar 

  98. Haas F, Haehnel CJ, Picker W, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 1997;30:1693–1700.

    PubMed  CAS  Google Scholar 

  99. Beanlands RS, deKemp RA, Smith S, Johansen H, Ruddy TD. F-18-fluorodeoxyglucose PET imaging alters clinical decision making in patients with impaired ventricular function. Am J Cardiol 1997;79:1092–1095.

    PubMed  CAS  Google Scholar 

  100. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 1995;91:1006–1015.

    PubMed  CAS  Google Scholar 

  101. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–146.

    PubMed  CAS  Google Scholar 

  102. Udelson JE, Coleman PS, Metherall J, et al. Predicting recovery of severe regional ventricular dysfunction: comparison of resting scintigraphy with thallium-201 and technetium-99m-sestamibi. Circulation 1994;89:2552–2561.

    PubMed  CAS  Google Scholar 

  103. Cornel JH, Arnese M, Forster T, Postma-Tjoa J, Reijs AE, Fioretti PM. Potential and limitations of Tc-99m sestamibi scintigraphy for the diagnosis of myocardial viability. Herz 1994;19:19–27.

    PubMed  CAS  Google Scholar 

  104. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445–1453.

    PubMed  CAS  Google Scholar 

  105. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002;105:162–167.

    PubMed  Google Scholar 

  106. Selvanayagam JB, Kardos A, Francis JM, et al. Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 2004;110:1535–1541.

    PubMed  Google Scholar 

  107. Knuesel PR, Nanz D, Wyss C, et al. Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 2003;108:1095–1100.

    PubMed  Google Scholar 

  108. Herrero P, Weinheimer CJ, Dence C, Oellerich WF, Gropler RJ. Quantification of myocardial glucose utilization by PET and 1-carbon-11-glucose. J Nucl Cardiol 2002;9:5–14.

    PubMed  Google Scholar 

  109. Schön HR, Schelbert HR, Robinson G, et al. C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron emission tomography. I. Kinetics of C-11 palmitic acid in normal myocardium. Am Heart J 1981;103:532–547.

    Google Scholar 

  110. Maki MT, Haaparanta M, Nuutila P, et al. Free fatty acid uptake in the myocardium and skeletal muscle using fluorine-18-fluoro-6-thia-heptadecanoic acid. J Nucl Med 1998;39:1320–1327.

    PubMed  CAS  Google Scholar 

  111. Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687–696.

    PubMed  CAS  Google Scholar 

  112. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabelled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 1988;63:628–634.

    PubMed  CAS  Google Scholar 

  113. Beanlands RS, Bach DS, Raylman R, et al. Acute effects of dobutamine on myocardial oxygen consumption and cardiac efficiency measured using carbon-11 acetate kinetics in patients with dilated cardiomyopathy. J Am Coll Cardiol 1993;22:1389–1398.

    PubMed  CAS  Google Scholar 

  114. Bengel FM, Permanetter B, Ungerer M, Nekolla S, Schwaiger M. Noninvasive estimation of myocardial efficiency using positron emission tomography and C-11 acetate: comparison between the normal and failing human heart. Eur J Nucl Med 2000;27:319–326.

    PubMed  CAS  Google Scholar 

  115. Beanlands RS, Nahmias C, Gordon E, et al. The effects of beta(1)-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction: a double-blind, placebo-controlled, positron-emission tomography study. Circulation 2000;102:2070–2075.

    PubMed  CAS  Google Scholar 

  116. Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 2004;109:2191–2196.

    PubMed  Google Scholar 

  117. Nuutila P, Knuuti MJ, Raitakari M, et al. Effect of antilipolysis on heart and skeletal muscle glucose uptake in overnight fasted humans. Am J Physiol 1994;267:E941–E946.

    PubMed  CAS  Google Scholar 

  118. Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation: a longitudinal study using positron emission tomography and C-11 hydroxyephedrine. Circulation 1999;99:1866–1871.

    PubMed  CAS  Google Scholar 

  119. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997;336:1208–1215.

    PubMed  Google Scholar 

  120. Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 2001;345:731–738.

    PubMed  CAS  Google Scholar 

  121. Bengel FM, Ueberfuhr P, Ziegler SI, et al. Noninvasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med 2000;27:1650–1657.

    PubMed  CAS  Google Scholar 

  122. Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER Jr, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22:368–375.

    PubMed  CAS  Google Scholar 

  123. Wichter T, Schafers M, Rhodes CG, et al. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation 2000;101:1552–1558.

    PubMed  CAS  Google Scholar 

  124. Calkins H, Allman K, Bolling S, et al. Correlation between scintigraphic evidence of regional sympathetic neuronal dysfunction and ventricular refractoriness in the human heart. Circulation 1993;88:172–179.

    PubMed  CAS  Google Scholar 

  125. Ungerer M, Hartmann F, Karoglan M, et al. Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 1998;97:174–180.

    PubMed  CAS  Google Scholar 

  126. Vesalainen RK, Pietila M, Tahvanainen KU, et al. Cardiac positron emission tomography imaging with [11C]hydroxyephedrine, a specific tracer for sympathetic nerve endings, and its functional correlates in congestive heart failure. Am J Cardiol 1999;84:568–574.

    PubMed  CAS  Google Scholar 

  127. Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100:813–819.

    PubMed  Google Scholar 

  128. Pietila M, Malminiemi K, Ukkonen H, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 2001;28:373–376.

    PubMed  CAS  Google Scholar 

  129. Merlet P, Delforge J, Syrota A, et al. Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 1993;87:1169–1178.

    PubMed  CAS  Google Scholar 

  130. Schafers M, Dutka D, Rhodes CG, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 1998;82:57–62.

    PubMed  CAS  Google Scholar 

  131. Law MP, Osman S, Pike VW, et al. Evaluation of [11C]GB67, a novel radioligand for imaging myocardial alpha 1-adrenoceptors with positron emission tomography. Eur J Nucl Med 2000;27:7–17.

    PubMed  CAS  Google Scholar 

  132. Momose M, Reder S, Raffel D, et al. Evaluation of cardiac β-adrenoceptors in the isolated perfused rat heart using (s)-[11C] CGP12388. J Nucl Med 2004;45:471–477.

    PubMed  CAS  Google Scholar 

  133. Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation 1997;96:3416–3422.

    PubMed  Google Scholar 

  134. Haubner R, Wester HJ, Reuning U, et al. Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999;40:1061–1071.

    PubMed  CAS  Google Scholar 

  135. Strauss HW, Narula J, Blankenberg FG. Radioimaging to identify myocardial cell death and probably injury. Lancet 2000;356:180–181.

    PubMed  CAS  Google Scholar 

  136. Grierson JR, Yagle KJ, Eary JF, et al. Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug Chem 2004;15:373–379.

    PubMed  CAS  Google Scholar 

  137. Avril N, Bengel FM. Defining the success of cardiac gene therapy: how can nuclear imaging contribute? Eur J Nucl Med Mol Imaging 2003;30:757–771.

    PubMed  CAS  Google Scholar 

  138. Bengel FM, Anton M, Richter T, et al. Noninvasive imaging of transgene expression using positron emission tomography in a pig model of myocardial gene transfer. Circulation 2003;108:2127–2133.

    PubMed  CAS  Google Scholar 

  139. Doubrovin M, Ponomarev V, Beresten T, et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A 2001;98:9300–9305.

    PubMed  CAS  Google Scholar 

  140. Wu JC, Chen IY, Sundaresan G, et al. Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 2003;108:1302–1305.

    PubMed  Google Scholar 

  141. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med 2000;41:661–681.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bengel, F.M., Schwaiger, M. (2006). PET in Clinical Cardiology. In: Valk, P.E., Delbeke, D., Bailey, D.L., Townsend, D.W., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London . https://doi.org/10.1007/1-84628-187-3_26

Download citation

  • DOI: https://doi.org/10.1007/1-84628-187-3_26

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-971-5

  • Online ISBN: 978-1-84628-187-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics