Skip to main content

PET Imaging in Pediatric Disorders

  • Chapter
Positron Emission Tomography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gordon I. Issue surrounding preparation, information, and handling the child and parent in nuclear medicine. J Nucl Med 1998;39:490–494.

    PubMed  CAS  Google Scholar 

  2. Treves ST. Introduction. In: Treves ST, editor. Pediatric Nuclear Medicine, 2nd ed. New York: Springer-Verlag, 1995:1–11.

    Google Scholar 

  3. Mandell GA, Cooper JA, Majd M, et al. Procedure guidelines for pediatric sedation in nuclear medicine. J Nucl Med 1997;38:1640–1643.

    PubMed  CAS  Google Scholar 

  4. Shulkin BL. PET applications in pediatrics. Q J Nucl Med 1997;41:281–291.

    PubMed  CAS  Google Scholar 

  5. Borgwardt L, Larsen HJ, Pedersen K, et al. Practical use and implementation of PET in children in a hospital PET center. Eur J Nucl Med Mol Imaging 2003;30:1389–1397.

    Article  PubMed  Google Scholar 

  6. Roberts EG, Shulkin BL. Technical issues in performing PET studies in pediatric patients. J Nucl Med Technol 2004;32:5–9.

    PubMed  Google Scholar 

  7. Kaste SC. Issues specific to implementing PET/CT for pediatric oncology: what we have learned along the way. Pediatr Radiol 2004;34:205–213.

    Article  PubMed  Google Scholar 

  8. ICRP Report 80. Radiation dose to patients from radiopharmaceuticals. Stockholm: International Commission on Radiation Protection, 1998:49–110.

    Google Scholar 

  9. ICRP Report 56. Age-dependent doses to members of the public from intake of radionuclides: Part 1. Stockholm: International Commission on Radiation Protection, 1989:4.

    Google Scholar 

  10. Jones SC, Alavi A, Christman D, et al. The radiation dosimetry of 2-[18F]fluoro-2-deoxy-D-glucose in man. J Nucl Med 1982;23:613–617.

    PubMed  CAS  Google Scholar 

  11. Ruotsalainen U, Suhonen-Povli H, Eronen E, et al. Estimated radiation dose to the newborn in FDG-PET studies. J Nucl Med 1996;37:387–393.

    PubMed  CAS  Google Scholar 

  12. Fahey F, Palmer M, Strauss K, et al. Image quality and dosimetry using CT-based attenaution correction. (In preparation.)

    Google Scholar 

  13. Brenner D, Elliston C, Hall E, et al. Estimated risks of radiationinduced fatal cancer from pediatric CT. Am J Radiol 2001;176:289–296.

    CAS  Google Scholar 

  14. Chugani HT, Phelps ME. Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science 1986;231:840–843.

    Article  PubMed  CAS  Google Scholar 

  15. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol 1987;22:487–497.

    Article  PubMed  CAS  Google Scholar 

  16. Chugani HT. Positron emission tomography. In: Berg BO, editor. Principles of Child Neurology. New York: McGraw-Hill, 1996:113–128.

    Google Scholar 

  17. Hauser W. Epidemiology of epilepsy in children. Neurosurg Clin N Am 1995;6:419–428.

    PubMed  CAS  Google Scholar 

  18. National Institutes of Health Consensus Development Conference Statement: surgery for epilepsy. Epilepsia; 31:806–812.

    Google Scholar 

  19. Kuzniecky R, Suggs S, Gaudier J, et al. Lateralization of epileptic foci by magnetic resonance imaging in temporal lobe epilepsy. J Neuroimaging 1991;1:163–167.

    PubMed  CAS  Google Scholar 

  20. Treves ST, Connolly LP. Single photon emission computed tomography in pediatric epilepsy. Neurosurg Clin N Am 1995;6:473–480.

    PubMed  CAS  Google Scholar 

  21. Snead OC III, Chen LS, Mitchell WG, et al. Usefulness of [18F]fluorodeoxyglucose positron emission tomography in pediatric epilepsy surgery. Pediatr Neurol 1996;14:98–107.

    Article  PubMed  Google Scholar 

  22. Meltzer CC, Adelson PD, Brenner RP, et al. Planned ictal FDG PET imaging for localization of extratemporal epileptic foci. Epilepsia 2000;41(2):193–200.

    Article  PubMed  CAS  Google Scholar 

  23. Juhasz C, Chugani DC, Muzik O, et al. Is epileptogenic cortex truly hypometabolic on interictal positron emission tomography? Ann Neurol 2000;48(1):88–96.

    Article  PubMed  CAS  Google Scholar 

  24. Cummings TJ, Chugani DC, Chugani HT. Positron emission tomography in pediatric epilepsy. Neurosurg Clin N Am 1995;6:465–472.

    PubMed  CAS  Google Scholar 

  25. Engel J Jr, Kuhl DE, Phelps ME. Patterns of human local cerebral glucose metabolism during epileptogenic seizures. Science 1982;218:64–66.

    Article  PubMed  Google Scholar 

  26. da Silva EA, Chugani DC, Muzik O, et al. Identification of frontal lobe epileptic foci in children using positron emission tomography. Epilepsia 1997;38:1198–1208.

    Article  PubMed  Google Scholar 

  27. Hrachovy R, Frost J. Infantile spasms. Pediatr Clin N Am 1989;36:311–329.

    CAS  Google Scholar 

  28. Chugani HT, Shields WD, Shewmon DA, et al. Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol 1990;27:406–413.

    Article  PubMed  CAS  Google Scholar 

  29. Chuagni HT, Shewmon DA, Shields WD, et al. Surgery for intractable infantile spasms: neuroimaging perspectives. Epilepsia 1993;34:764–771.

    Article  Google Scholar 

  30. Chugani HT, Da Silva E, Chugani DC. Infantile spasms: III. Prognostic implications of bitemporal hypometabolism on positron emission tomography. Ann Neurol 1996;39:643–649.

    Article  PubMed  CAS  Google Scholar 

  31. Chugani HT, Conti JR. Etiologic classification of infantile spasms in 140 cases: role of positron emission tomography. J Child Neurol 1996;11:44–48.

    PubMed  CAS  Google Scholar 

  32. Savic I, Svanborg E, Thorell JO. Cortical benzodiazepine receptor changes are related to frequency of partial seizures: a positron emission tomography study. Epilepsia 1996;37:236–244.

    Article  PubMed  CAS  Google Scholar 

  33. Arnold S, Berthele A, Drzezga A, et al. Reduction of benzodiazepine receptor binding is related to the seizure onset zone in extratemporal focal cortical dysplasia. Epilepsia 2000;41(7):818–824.

    Article  PubMed  CAS  Google Scholar 

  34. Richardson MP, Koepp MJ, Brooks DJ, et al. 11C-Flumanezil PET in neocortical epilepsy. Neurology 1998;51:485–492.

    PubMed  CAS  Google Scholar 

  35. Debets RM, Sadzot B, van Isselt JW, et al. Is 11C-flumazenil PET superior to 18FDG PET and 123I-iomazenial SPECT in presurgical evaluation of temporal lobe epilepsy? J Neurol Neurosurg Psychiatry 1997;62:141–150.

    PubMed  CAS  Google Scholar 

  36. Kumlien E, Hartvig P, Valind S, et al. NMDA-receptor activity visualized with (S)-[N-methyl-11-C]ketamine and positron emission tomography in patients with medial temporal epilepsy. Epilepsia 1999;40:30–37.

    Article  PubMed  CAS  Google Scholar 

  37. Mayberg HS, Sadzot B, Meltzer CC, et al. Quantification of mu and non-mu opiate receptors in temporal lobe epilepsy using positron emission tomography. Ann Neurol 1991;30:3–11.

    Article  PubMed  CAS  Google Scholar 

  38. Kumlien E, Bergstrom M, Lilja A, et al. Positron emission tomography with [C-11]deuterium deprenyl in temporal lobe epilepsy. Epilepsia 1995;36:712–721.

    Article  PubMed  CAS  Google Scholar 

  39. Volpe JJ, Herscovitch P, Perlman JM, et al. Positron emission tomography in the newborn: extensive impairment of regional cerebral blood flow with intraventricular hemorrhage and hemorrhagic intracerebral involvement. Pediatrics 1983; 72(5):589–601.

    PubMed  CAS  Google Scholar 

  40. Volpe JJ, Herscovitch P, Perlman JM, et al. Positron emission tomography in the asphyxiated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol 1985;17(3):287–296.

    Article  PubMed  CAS  Google Scholar 

  41. Zilbovicius M, Boddaert N, Belin P, et al. Temporal lobe dysfunction in childhood autism: a PET study. Am J Psychiatry 2000;157(12):1988–1993.

    Article  PubMed  CAS  Google Scholar 

  42. Ernst M, Zametkin AJ, Matochik JA, et al. High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am J Psychiatry 1999;156(8):1209–1215.

    PubMed  CAS  Google Scholar 

  43. Jacobson LK, Hamburger SD, Van Horn JD, et al. Cerebral glucose metabolism in childhood onset schizophrenia. Psychiatry Res 1997;75(3):131–144.

    Google Scholar 

  44. Reed W, Jagust W, Al-Mateen M, et al. Role of positron emission tomography in determining the extent of CNS ischemia in patients with sickle cell disease. Am J Hematol 1999;60(4):268–272.

    Article  PubMed  CAS  Google Scholar 

  45. Delvenne V, Lotstra F, Goldman S, et al. Brain hypometabolism of glucose in anorexia nervosa: a PET scan study. Biol Psychiatry 1995;37(3):161–169.

    Article  PubMed  CAS  Google Scholar 

  46. Delvenne V, Goldman S, Simon Y, et al. Brain hypometabolism of glucose in bulimia nervosa. Int J Eat Disord 1997;21(4):313–320.

    Article  PubMed  CAS  Google Scholar 

  47. Lee JS, Asano E, Muzik O, et al. Sturge-Weber syndrome: correlation between clinical course and FDG PET findings. Neurology 2001;57:189–195.

    PubMed  CAS  Google Scholar 

  48. Al-Essa MA, Bakheet SM, Patay ZJ, et al. Clinical and cerebral FDG PET scan in a patient with Krabbe’s disease. Pediatr Neurol 2000;22:44–47.

    Article  PubMed  CAS  Google Scholar 

  49. Lee JS, Juhasz C, Kaddurah AK, et al. Patterns of cerebral glucose metabolism in early and late stages Rasmussen’s syndrome. J Child Neurol 2001;16:798–805.

    PubMed  CAS  Google Scholar 

  50. Lee JS, Pfund Z, Juhasz C, et al. Altered regional brain glucose metabolism in Duchenne muscular dystrophy: a PET study. Muscle Nerve 2002;26:506–512.

    Article  PubMed  Google Scholar 

  51. Quinlivan RM, Robinson RO, Maisey MN. Positron emission tomography in pediatric cardiology. Arch Dis Child 1998;79(6):520–522.

    PubMed  CAS  Google Scholar 

  52. Donnelly JP, Raffel DM, Shulkin BL, et al. Resting coronary flow and coronary flow reserve in human infants after repair or palliation of congenital heart defects as measured by positron emission tomography. J Thorac Cardiovasc Surg 1998;115(1):103–110.

    Article  PubMed  CAS  Google Scholar 

  53. Yates RW, Marsden PK, Badawi RD, et al. Evaluation of myocardial perfusion using positron emission tomography in infants following a neonatal arterial switch operation. Pediatr Cardiol 2000;21(2):111–118.

    Article  PubMed  CAS  Google Scholar 

  54. Rickers C, Sasse K, Buchert R, et al. Myocardial viability assessed by positron emission tomography in infants and children after the arterial switch operation and suspected infarction. J Am Coll Cardiol 2000;36(5):1676–1683.

    Article  PubMed  CAS  Google Scholar 

  55. Singh TP, Muzik O, Forbes TF, et al. Positron emission tomography myocardial perfusion imaging in children with suspected coronary abnormalities. Pediatr Cardiol 2003;24:138–144.

    Article  PubMed  CAS  Google Scholar 

  56. Hernandez-Pampaloni M, Allada V, Fishbein MC, et al. Myocardial perfusion and viability by positron emission tomography in infants and children with coronary abnormalities: correlation with echocardiography, coronary angiography, and histopathology. J Am Coll Cardiol 2003;41:618–626.

    Article  PubMed  Google Scholar 

  57. Hwang B, Liu RS, Chu LS, et al. Positron emission tomography for the assessment of myocardial viability in Kawasaki disease using different therapies. Nucl Med Commun 2000;21(7):631–636.

    Article  PubMed  CAS  Google Scholar 

  58. Huaser M, Bengel F, Kuehn A, et al. Myocardial blood flow and coronary flow reserve in children with “normal” epicardial coronary arteries after the onset of Kawasaki disease assessed by positron emission tomography. Pediatr Cardiol 2004; 25:108–112.

    Article  Google Scholar 

  59. Litvinova I, Litvinov M, Loeonteva I, et al. PET for diagnosis of mitochondrial cardiomyopathy in children. Clin Posit Imaging 2000;3(4):172.

    Article  Google Scholar 

  60. Gurney JG, Severson RK, Davis S, et al. Incidence of cancer in children in the United States. Cancer (Phila) 1995;75:2186–2195.

    Article  PubMed  CAS  Google Scholar 

  61. Robison L. General principles of the epidemiology of childhood cancer. In: Pizzo P, Poplack D, editors. Principles and Practice of Pediatric Oncology. Philadelphia: Lippincott-Raven, 1997:1–10.

    Google Scholar 

  62. Franzius C, Schober O. Assessment of therapy response by FDG PET in pediatric patients. Q J Nucl Med 2003;47:41–45.

    PubMed  CAS  Google Scholar 

  63. Wegner EA, Barrington SF, Kingston JE, et al. Eur J Nucl Med Mol Imaging 2005;32(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  64. Shulkin BL. PET imaging in pediatric oncology. Pediatr Radiol 2004;34:199–204.

    Article  PubMed  Google Scholar 

  65. Patel PM, Alibazoglu H, Ali A, et al. Normal thymic uptake of FDG on PET imaging. Clin Nucl Med 1996;21:772–775.

    Article  PubMed  CAS  Google Scholar 

  66. Weinblatt ME, Zanzi I, Belakhlef A, et al. False positive FDG-PET imaging of the thymus of a child with Hodgkin’s disease. J Nucl Med 1997;38:888–890.

    PubMed  CAS  Google Scholar 

  67. Brink I, Reinhardt MJ, Hoegerle S, et al. Increased metabolic activity in the thymus gland studied with 18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med 2001;42:591–595.

    PubMed  CAS  Google Scholar 

  68. Yeung HW, Grewal RK, Gonen M, et al. Patterns of (18F)-FDG uptake in adipose tissue and muscles: a potential source of falsepositives for PET. J Nucl Med 2003;44:1789–1796.

    PubMed  Google Scholar 

  69. Cohade C, Mourtzikos KA, Wahl RL. “USA-fat”: prevalence is related to ambient outdoor temperature: evaluation with 18F-FDG PET/CT. J Nucl Med 2003;44:1267–1270.

    PubMed  Google Scholar 

  70. Tatsumi M, Engles JM, Ishimori T, et al. Intense (18)F-FDG uptake in brown fat can be reduced pharmacologically. J Nucl Med 2004;45:1189–1193.

    PubMed  CAS  Google Scholar 

  71. Delbeke D. Oncological applications of FDG PET imaging: colorectal cancer, lymphoma, and melanoma. J Nucl Med 1999;40:591–603.

    PubMed  CAS  Google Scholar 

  72. Sugawara Y, Fisher SJ, Zasadny KR, et al. Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 1998;16:173–180.

    PubMed  CAS  Google Scholar 

  73. Hollinger EF, Alibazoglu H, Ali A, et al. Hematopoietic cytokinemediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med 1998;23:93–98.

    Article  PubMed  CAS  Google Scholar 

  74. Yeung HW, Sanches A, Squire OD, et al. Standardized uptake value in pediatric patients: an investigation to determine the optimum measurement parameter. Eur J Nucl Med Mol Imaging 2002;29:61–66.

    Article  PubMed  CAS  Google Scholar 

  75. Kleihues P, Burger P, Scheithauer B. The new WHO classification of brain tumours. Brain Pathol 1993;3:255–268.

    PubMed  CAS  Google Scholar 

  76. Robertson R, Ball WJ, Barnes P. Skull and brain. In: Kirks D, editor. Practical Pediatric Imaging. Diagnostic Radiology of Infants and Children. Philadelphia: Lippincott-Raven, 1997:65–200.

    Google Scholar 

  77. Maria B, Drane WB, Quisling RJ, et al. Correlation between gadolinium-diethylenetriaminepentaacetic acid contrast enhancement and thallium-201 chloride uptake in pediatric brainstem glioma. J Child Neurol 1997;12:341–348.

    PubMed  CAS  Google Scholar 

  78. O’Tuama L, Janicek M, Barnes P, et al. Tl-201/Tc-99m HMPAO SPECT imaging of treated childhood brain tumors. Pediatr Neurol 1991;7:249–257.

    Article  PubMed  CAS  Google Scholar 

  79. O’Tuama L, Treves ST, Larar G, et al. Tl-201 versus Tc-99m MIBI SPECT in evaluation of childhood brain tumors. J Nucl Med 1993;34:1045–1051.

    PubMed  CAS  Google Scholar 

  80. Rollins N, Lowry P, Shapiro K. Comparison of gadolinium-enhanced MR and thallium-201 single photon emission computed tomography in pediatric brain tumors. Pediatr Neurosurg 1995;22:8–14.

    Article  PubMed  CAS  Google Scholar 

  81. Valk PE, Budinger TF, Levin VA, et al. PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 1988;69:830–838.

    Article  PubMed  CAS  Google Scholar 

  82. Di Chiro G, Oldfield E, Wright DC, et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. Am J Radiol 1988;150:189–197.

    Google Scholar 

  83. Glantz MJ, Hoffman JM, Coleman RE, et al. Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann Neurol 1991;29:347–355.

    Article  PubMed  CAS  Google Scholar 

  84. Janus T, Kim E, Tilbury R, et al. Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Ann Neurol 1993;33:540–548.

    Article  PubMed  CAS  Google Scholar 

  85. Rozental JM, Levine RL, Nickles RJ. Changes in glucose uptake by malignant gliomas: preliminary study of prognostic significance. J Neurooncol 1991;10:75–83.

    Article  PubMed  CAS  Google Scholar 

  86. Schifter T, Hoffman JM, Hanson MW, et al. Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomogr 1993;17:509–561.

    PubMed  CAS  Google Scholar 

  87. Francavilla TL, Miletich RS, Di Chiro G, et al. Positron emission tomography in the detection of malignant degeneration of low-grade gliomas. Neurosurgery 1989;24:1–5.

    PubMed  CAS  Google Scholar 

  88. Patronas NJ, Di Chiro G, Kufta C, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 1985;62:816–822.

    PubMed  CAS  Google Scholar 

  89. Molloy PT, Belasco J, Ngo K, et al. The role of FDG PET imaging in the clinical management of pediatric brain tumors. J Nucl Med 1999;40:129P (abstract).

    Google Scholar 

  90. Holthof VA, Herholz K, Berthold F, et al. In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer (Phila) 1993;1394–1403.

    Google Scholar 

  91. Hoffman JM, Hanson MW, Friedman HS, et al. FDG-PET in pediatric posterior fossa brain tumors. J Comput Assist Tomogr 1992;16:62–68.

    PubMed  CAS  Google Scholar 

  92. Molloy PT, Defeo R, Hunter J, et al. Excellent correlation of FDG PET imaging with clinical outcome in patients with neurofibromatosis type I and low-grade astrocytomas (abstract). J Nucl Med 1999;40:129P.

    Google Scholar 

  93. Pirotte B, Goldman S, Salzberg S, et al. Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr Neurosurg 2003;38:146–155.

    Article  PubMed  Google Scholar 

  94. O’Tuama LA, Phillips PC, Strauss LC, et al. Two-phase [11C]L-methionine PET in childhood brain tumors. Pediatr Neurol 1990;6:163–170.

    Article  PubMed  CAS  Google Scholar 

  95. Mosskin M, von Holst H, Bergstrom M, et al. Positron emission tomography with 11C-methionine and computed tomography of intracranial tumours compared with histopathologic examination of multiple biopsies. Acta Radiol 1987;28:673–681.

    PubMed  CAS  Google Scholar 

  96. Lilja A, Lundqvist H, Olsson Y, et al. Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesion. Acta Radiol 1989;38:121–128.

    Article  Google Scholar 

  97. Mineura K, Sasajima T, Kowada M, et al. Indications for differential diagnosis of nontumor central nervous system diseases from tumors. A positron emission tomography study. J Neuroimaging 1997;7:8–15.

    PubMed  CAS  Google Scholar 

  98. Utriainen M, Metsahonkala L, Salmi TT, et al. Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer (Phila) 2002;95:1376–1386.

    Article  PubMed  Google Scholar 

  99. Cohen MD. Imaging of Children with Cancer. St. Louis: Mosby Yearbook, 1992.

    Google Scholar 

  100. Nadel HR, Rossleigh MA. Tumor imaging. In: Treves ST, editor. Pediatric Nuclear Medicine, 2nd ed. New York: Springer-Verlag, 1995:496–527.

    Google Scholar 

  101. Rossleigh MA, Murray IPC, Mackey DWJ. Pediatric solid tumors: evaluation by gallium-67 SPECT studies. J Nucl Med 1990;31:161–172.

    Google Scholar 

  102. Howman-Giles R, Stevens M, Bergin M. Role of gallium-67 in management of paediatric solid tumors. Aust Paediatr J 1982;18:120–125.

    PubMed  CAS  Google Scholar 

  103. Yang SL, Alderson PO, Kaizer HA, et al. Serial Ga-67 citrate imaging in children with neoplastic disease: concise communication. J Nucl Med 1979;20:210–214.

    Google Scholar 

  104. Sty JR, Kun LE, Starshak RJ. Pediatric applications in nuclear oncology. Semin Nucl Med 1985;15:17–200.

    Google Scholar 

  105. Barrington SF, Carr R. Staging of Burkitt’s lymphoma and response to treatment monitored by PET scanning. Clin Oncol 1995;7:334–335.

    Article  CAS  Google Scholar 

  106. Bangerter M, Moog F, Buchmann I, et al. Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) for accurate staging of Hodgkin’s disease. Ann Oncol 1998;9:1117–1122.

    Article  PubMed  CAS  Google Scholar 

  107. Jerusalem G, Warland V, Najjar F, et al. Whole-body 18F-FDG PET for the evaluation of patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Nucl Med Commun 1999;20:13–20.

    PubMed  CAS  Google Scholar 

  108. Leskinen-Kallio S, Ruotsalainen U, Nagren K, et al. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET study. J Nucl Med 1991;32:1211–1218.

    PubMed  CAS  Google Scholar 

  109. Moog F, Bangerter M, Kotzerke J, et al. 18-F-Fluorodeoxyglucose positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 1998;16:603–609.

    PubMed  CAS  Google Scholar 

  110. Moog F, Bangerter M, Diederichs CG, et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 1998;206:475–481.

    PubMed  CAS  Google Scholar 

  111. Moog F, Bangerter M, Diederichs CG, et al. Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) PET in nodal staging. Radiology 1997;203:795–800.

    PubMed  CAS  Google Scholar 

  112. Okada J, Yoshikawa K, Imazeki K, et al. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med 1991;32:686–691.

    PubMed  CAS  Google Scholar 

  113. Okada J, Yoshikawa K, Itami M, et al. Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med 1992;33:325–329.

    PubMed  CAS  Google Scholar 

  114. Rodriguez M, Rehn S, Ahlstrom H, et al. Predicting malignancy grade with PET in non-Hodgkin’s lymphoma. J Nucl Med 1995;36:1790–1796.

    PubMed  CAS  Google Scholar 

  115. Paul R. Comparison of fluorine-18-2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J Nucl Med 1987;28:288–292.

    PubMed  CAS  Google Scholar 

  116. Newman JS, Francis IR, Kaminski MS, et al. Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose: correlation with CT. Radiology 1994;190:111–116.

    PubMed  CAS  Google Scholar 

  117. de Wit M, Bumann D, Beyer W, et al. Whole-body positron emission tomography (PET) for diagnosis of residual mass in patients with lymphoma. Ann Oncol 1997;8(suppl 1):57–60.

    Article  PubMed  Google Scholar 

  118. Cremerius U, Fabry U, Neuerburg J, et al. Positron emission tomography with 18-F-FDG to detect residual disease after therapy for malignant lymphoma. Nucl Med Commun 1998;19:1055–1063.

    Article  PubMed  CAS  Google Scholar 

  119. Hoh CK, Glaspy J, Rosen P, et al. Whole-body FDG PET imaging for staging of Hodgkin’s disease and lymphoma. J Nucl Med 1997;38:343–348.

    PubMed  CAS  Google Scholar 

  120. Romer W, Hanauske AR, Ziegler S, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998;91:4464–4471.

    PubMed  CAS  Google Scholar 

  121. Stumpe KD, Urbinelli M, Steinert HC, et al. Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med 1998;25:721–728.

    Article  PubMed  CAS  Google Scholar 

  122. Lapela M, Leskinen S, Minn HR, et al. Increased glucose metabolism in untreated non-Hodgkin’s lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxyglucose. Blood 1995;86:3522–3527.

    PubMed  CAS  Google Scholar 

  123. Carr R, Barrington SF, Madan B, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 1998;91:3340–3346.

    PubMed  CAS  Google Scholar 

  124. Hudson MM, Krasin MJ, Kaste SC. PET imaging in pediatric Hodgkin’s lymphoma. Pediatr Radiol 2004;34:190–198.

    Article  PubMed  Google Scholar 

  125. Montravers F, McNamara D, Landman-Parker J, et al. [(18)F]FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging 2002;29:1155–1165.

    Article  PubMed  CAS  Google Scholar 

  126. Depas G, De Barsy C, Jerusalem G, et al. 18F-FDG PET in children with lymphomas. Eur J Nucl Med Mol Imaging 2005;32(1):31–38.

    Article  PubMed  Google Scholar 

  127. Lavely WC, Delbeke D, Greer JP, et al. FDG PET in the follow-up of management of patients with newly diagnosed Hodgkin and non-Hodgkin lymphoma after first-line chemotherapy. Int J Radiat Oncol Biol Phys 2003;57:307–315.

    Article  PubMed  Google Scholar 

  128. Swift P. Novel techniques in the delivery of radiation in pediatric oncology. Pediatr Clin N Am 2002;49:1107–1129.

    Article  Google Scholar 

  129. Korholz D, Kluge R, Wickmann L, et al. Importance of F18-fluorodeoxy-D-2-glucose positron emission tomography (FDGPET) for staging and therapy control of Hodgkin’s lymphoma in childhood and adolescence: consequences for the GPOH-HD 2003 protocol. Onkologie 2003;26:489–493.

    Article  PubMed  CAS  Google Scholar 

  130. Krasin MJ, Hudson MM, Kaste SC. Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process. Pediatr Radiol 2004;34:214–221.

    Article  PubMed  Google Scholar 

  131. Bousvaros A, Kirks DR, Grossman H. Imaging of neuroblastoma: an overview. Pediatr Radiol 1986;16:89–106.

    Article  PubMed  CAS  Google Scholar 

  132. Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med 2004;45:1172–1188.

    PubMed  Google Scholar 

  133. Briganti V, Sestini R, Orlando C et al. Imaging of somatostatin receptors by indium-111-pentetreotide correlates with quantitative determination of somatostatin receptor type 2 gene expression in neuroblastoma tumor. Clin Cancer Res 1997;3:2385–3291.

    PubMed  CAS  Google Scholar 

  134. Shulkin BL, Shapiro B, Hutchinson RJ. 131I-MIBG and bone scintigraphy for the detection of neuroblastoma. Presented at the Fifth Biennial Congress of the South African Society of Nuclear Medicine, Capetown, South Africa, September, 1992. S Afr Med J 1993;83:53.

    Google Scholar 

  135. Shulkin BL, Hutchinson RJ, Castle VP, et al. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 1996;199:743–750.

    PubMed  CAS  Google Scholar 

  136. Kushner BH, Yeung HW, Larson SM, et al. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 2001;19:3397–3405.

    PubMed  CAS  Google Scholar 

  137. Shulkin BL, Wieland DM, Baro ME, et al. PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med 1996;37:16–21.

    PubMed  CAS  Google Scholar 

  138. Shulkin BL, Wieland DM, Castle VP, et al. Carbon-11 epinephrine PET imaging of neuroblastoma. J Nucl Med 1999;40:129P (abstract).

    Google Scholar 

  139. Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4-[fluorine-18]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med 1995;36:644–650.

    PubMed  CAS  Google Scholar 

  140. Ott RJ, Tait D, Flower MA, et al. Treatment planning for 131I-mIBG radiotherapy of neural crest tumors using 124I-mIBG positron emission tomography. Br J Radiol 1992;65:787–791.

    Article  PubMed  CAS  Google Scholar 

  141. Barnewolt CE, Paltiel HJ, Lebowitz RL, et al. Genitourinary system. In: Kirks DR, editor. Practical Pediatric Imaging. Diagnostic Radiology of Infants and Children, 3rd edition. Philadelphia: Lippincott-Raven, 1997:1009–1170.

    Google Scholar 

  142. Shulkin BL, Chang E, Strouse PJ, et al. PET FDG studies of Wilms tumors. J Pediatr Hematol/Onccol 1997;19:334–338.

    Article  CAS  Google Scholar 

  143. McDonald DJ. Limb salvage surgery for sarcomas of the extremities. Am J Radiol 1994;163:509–513.

    CAS  Google Scholar 

  144. Triche TJ. Pathology of pediatric malignancies. In: Pizzo PA, Poplack DG, editors. Principles and Practice of Pediatric Oncology, 2nd ed. Philadelphia: Lippincott, 1993:115–152.

    Google Scholar 

  145. O’Connor MI, Pritchard DJ. Ewing’s sarcoma. Prognostic factors, disease control, and the reemerging role of surgical treatment. Clin Orthop 1991;262:78–87.

    PubMed  Google Scholar 

  146. Jaramillo D, Laor T, Gebhardt M. Pediatric musculoskeletal neoplasms. Evaluation with MR imaging. MRI Clin N Am 1996;4:1–22.

    Google Scholar 

  147. Frouge C, Vanel D, Coffre C, et al. The role of magnetic resonance imaging in the evaluation of Ewing sarcoma: a report of 27 cases. Skeletal Radiol 1988;17:387–392.

    Article  PubMed  CAS  Google Scholar 

  148. MacVicar AD, Olliff JFC, Pringle J, et al. Ewing sarcoma: MR imaging of chemotherapy-induced changes with histologic correlation. Radiology 1992;184:859–864.

    PubMed  CAS  Google Scholar 

  149. Lemmi MA, Fletcher BD, Marina NM, et al. Use of MR imaging to assess results of chemotherapy for Ewing sarcoma. Am J Radiol 1990;155:343–346.

    CAS  Google Scholar 

  150. Erlemann R, Sciuk J, Bosse A, et al. Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 1990;175:791–796.

    PubMed  CAS  Google Scholar 

  151. Holscher HC, Bloem JL, Vanel D, et al. Osteosarcoma: chemotherapy-induced changes at MR imaging. Radiology 1992;182:839–844.

    PubMed  CAS  Google Scholar 

  152. Lawrence JA, Babyn PS, Chan HS, et al. Extremity osteosarcoma in childhood: prognostic value of radiologic imaging. Radiology 1993;189:43–47.

    PubMed  CAS  Google Scholar 

  153. Connolly LP, Laor T, Jaramillo D, et al. Prediction of chemotherapeutic response of osteosarcoma with quantitative thallium-201 scintigraphy and magnetic resonance imaging. Radiology 1996;201(P):349 (abstract).

    Google Scholar 

  154. Lin J, Leung WT. Quantitative evaluation of thallium-201 uptake in predicting chemotherapeutic response of osteosarcoma. Eur J Nucl Med 1995;22:553–555.

    Article  PubMed  CAS  Google Scholar 

  155. Menendez LR, Fideler BM, Mirra J. Thallium-201 scanning for the evaluation of osteosarcoma and soft tissue sarcoma. J Bone Joint Surg 1993;75:526–531.

    PubMed  CAS  Google Scholar 

  156. Ramanna L, Waxman A, Binney G, et al. Thallium-201 scintigraphy in bone sarcoma: comparison with gallium-67 and technetium-99m MDP in the evaluation of chemotherapeutic response. J Nucl Med 1990;31:567–572.

    PubMed  CAS  Google Scholar 

  157. Rosen G, Loren GJ, Brien EW, et al. Serial thallium-201 scintigraphy in osteosarcoma. Correlation with tumor necrosis after preoperative chemotherapy. Clin Orthop 1993;293:302–306.

    PubMed  Google Scholar 

  158. Ohtomo K, Terui S, Yokoyama R, et al. Thallium-201 scintigraphy to assess effect of chemotherapy to osteosarcoma. J Nucl Med 1996;37:1444–1448.

    PubMed  CAS  Google Scholar 

  159. Bar-Sever Z, Connolly LP, Treves ST, et al. Technetium-99m MIBI in the evaluation of children with Ewing’s sarcoma. J Nucl Med 1997;38:13P (abstract).

    Google Scholar 

  160. Caner B, Kitapel M, Unlu M, et al. Technetium-99m-MIBI uptake in benign and malignant bone lesions: a comparative study with technetium-99m-MDP. J Nucl Med 1992;33:319–324.

    PubMed  CAS  Google Scholar 

  161. Lenzo NP, Shulkin B, Castle VP, et al. FDG PET in childhood soft tissue sarcoma. J Nucl Med 2000;41(suppl 5):96P (abstract).

    Google Scholar 

  162. Abdel-Dayem HM. The role of nuclear medicine in primary bone and soft tissue tumors. Semin Nucl Med 1997;27:355–363.

    Article  PubMed  CAS  Google Scholar 

  163. Shulkin BL, Mitchell DS, Ungar DR, et al. Neoplasms in a pediatric population: 2-[F-18]-fluoro-2-deoxy-D-glucose PET studies. Radiology 1995;194:495–500.

    PubMed  CAS  Google Scholar 

  164. Jadvar H, Connolly LP, Shulkin BL, et al. Positron-emission tomography in pediatrics. Nucl Med Annual 2000;53–83.

    Google Scholar 

  165. Franzius C, Sciuk J, Brinkschmidt C, et al. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med 2000;25:874–881.

    Article  PubMed  CAS  Google Scholar 

  166. Hawkins DS, Rajendran JG, Conrad EU III, et al. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer (Phila) 2002;94:3277–3284.

    Article  PubMed  CAS  Google Scholar 

  167. Brisse H, Ollivier L, Edeline V, et al. Pediatr Radiol 2004;34:595–605.

    Article  PubMed  Google Scholar 

  168. Franzius C, Sciuk J, Daldrup-Link HE, et al. FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med 2000;27:1305–1311.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Jadvar, H., Connolly, L.P., Fahey, F.H., Shulkin, B.L. (2006). PET Imaging in Pediatric Disorders. In: Valk, P.E., Delbeke, D., Bailey, D.L., Townsend, D.W., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London . https://doi.org/10.1007/1-84628-187-3_22

Download citation

  • DOI: https://doi.org/10.1007/1-84628-187-3_22

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-971-5

  • Online ISBN: 978-1-84628-187-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics