Skip to main content

PET and PET/CT in Sarcoma

  • Chapter
Positron Emission Tomography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mack TM. Sarcomas and other malignancies of soft tissue, retroperitoneum, peritoneum, pleura, heart, mediastinum, and spleen. Cancer (Phila) 1995;75(1 suppl): 211–244.

    Article  PubMed  CAS  Google Scholar 

  2. Fletcher CDM, Uni KK, Meteus F, editors. World Health Organisation Classification of Tumors. Pathology and Genetics of Tumors of Soft Tissue and Bone. Lyon: IARC Press, 2002.

    Google Scholar 

  3. Enzinger FM, Weiss SW, editors. Soft Tissue Tumors, 3rd ed. St. Louis: Mosby, 1995.

    Google Scholar 

  4. Trojani M, Contesso G, Oindrej M, et al. Soft tissue sarcomas of adults: study of pathological and prognostic variables and definition of a grading system. Int J Cancer 1984;33: 37–42.

    PubMed  CAS  Google Scholar 

  5. Lichenstein L. Classification of primary tumors of bone. Cancer (Phila) 1951;4:335–341.

    Article  Google Scholar 

  6. Schwajowicz F, Sissons H, Sobin L. The World Health Organization’s histologic classification of bone tumors. Cancer (Phila) 1995;75:1208–1214.

    Article  Google Scholar 

  7. Russell WD, Cohen J, Enzinger FM, et al. A clinical and pathological staging system for soft tissue sarcomas. Cancer (Phila) 1977;40:1562–1570.

    Article  PubMed  CAS  Google Scholar 

  8. Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculo-skeletal sarcoma Clin Orthop 1980;153:105–120.

    Google Scholar 

  9. Hajdu SI. Pathology of soft tissue tumors. Philadelphia: Lea & Febiger, 1979.

    Google Scholar 

  10. Lawrence W Jr, Donegan WL, Natarajan N, Mettlin C, Beart R, Winchester D. Adult soft tissue sarcoma. A pattern of care survey of the American College of Surgeons. Ann Surg 1996;205(4):349–359.

    Google Scholar 

  11. Goldstein H, McNeil BJ, Zufall E, Jaffe N, Treves S. Changing indications for bone scintigraphy in patients with osteosarcoma. Radiology 1980;135:177–180.

    PubMed  CAS  Google Scholar 

  12. Murray IPC, Ellison BS. Radionuclide bone imaging for primary bone malignancy. Clin Oncol 1986;5:141–158.

    Google Scholar 

  13. McKillop JH, Etcubanas E, Goris ML. The indications for and limitations of bone scintigraphy in osteogenic sarcoma:a review of 55 patients. Cancer (Phila) 1981;48(5):1133–1138.

    Article  PubMed  CAS  Google Scholar 

  14. Clasby R, Tilling K, Smith MA, Fletcher CDM. Variable management of soft tissue sarcoma: regional audit with implications for specialist care. Br J Surg 1998;84:692–696.

    Google Scholar 

  15. Goodlad JR, Fletcher CDM, Smith MA. Surgical resection of primary soft tissue sarcoma: incidence of residual tumor in 95 patients needing re-excision after local resection. J Bone Joint Surg 1996;78B:658–661.

    Google Scholar 

  16. Mankin HJ, Lange TA, Spanier SS. The hazards of biopsy in patients with malignant primary bone and soft tissue tumors. J Bone Joint Surg 1982;64A:1121–1127.

    Google Scholar 

  17. Springfield DS, Rosenberg A. Biopsy: complicated and risky. J Bone Joint Surg 1996;78A:639–643.

    Google Scholar 

  18. Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J Nucl Med 2003;44:930–942.

    PubMed  Google Scholar 

  19. Dome JS, Schwartz CL. Osteosarcoma. In: Waterhouse DO, Cohn SC, editors. Diagnostic and Therapeutic Advances in Paediatric Oncology. Boston: Kluwer, 1997:215–251.

    Google Scholar 

  20. Myers PA, Gorlick R, Heller G, et al. Intensification of preoperative chemotherapy for osteogenic sarcoma: results of the Memorial Sloan-Kettering (T12 protocol). J Clin Oncol 1998;16:2452–2458.

    Google Scholar 

  21. Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or the trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002;20:776–790.

    Article  PubMed  Google Scholar 

  22. Souhami RL, Craft AW, Van Dereiojken JW, et al. Randomised trial of two regimes of chemotherapy in operable osteosarcoma. A study of the European Osteosarcoma Group. Lancet 1997;350:911–917.

    Article  PubMed  CAS  Google Scholar 

  23. Craft AW, for UK Children’s Cancer Study Group. Long term results from the first UKCCSG Ewing’s tumor study (ET-1). Eur J Cancer 1997;33:1061–1069.

    Article  PubMed  CAS  Google Scholar 

  24. van Trommel MF, Kroon HM, Bloem JL, Hogendoorn PC, Taminiau AH. MR imaging based strategies in limb salvage surgery for osteosarcoma of the distal femur. Skeletal Radiol 1997;26(11):636–641.

    Article  PubMed  Google Scholar 

  25. Safram MR, Codie MH, Nambar S, et al. 151 Endoprosthetic reconstructions for patients with primary tumors involving bone. Contemp Orthop Addit 1994;29:15–25.

    Google Scholar 

  26. van der Woude HJ, Bloem JL, Hogendoorn PC. Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing’s sarcoma: review of current imaging modalities. Skeletal Radiol 1998;27(2):57–71.

    Article  PubMed  Google Scholar 

  27. van der Woude HJ, Verstraete KL, Hogendoorn PC, Taminiau AH, Hermans J, Bloem JL. Musculoskeletal tumors: does fast dynamic contrast-enhanced subtraction MR imaging contribute to the characterization? Radiology 1998;208(3):821–828.

    PubMed  Google Scholar 

  28. van der Woude HJ, Bloem JL, Pope TL Jr. Magnetic resonance imaging of the musculoskeletal system. Part 9. Primary tumors. Clin Orthop 1998;347:272–286.

    PubMed  Google Scholar 

  29. Bloem JL, van der Woude HJ, Geirnaerdt M, Hogendoorn PC, Taminiau AH, Hermans J. Does magnetic resonance imaging make a difference for patients with musculoskeletal sarcoma? Br J Radiol 1997;70(832):327–337.

    PubMed  CAS  Google Scholar 

  30. Southee AE, Kaplan WD, Jochelson MS, et al. Gallium imaging in metastatic and recurrent soft tissue sarcoma. J Nucl Med 1992;33:1594–1599.

    PubMed  CAS  Google Scholar 

  31. Finn HA, Simon MA, Martin WB, Darakjain H. Scintigraphy with gallium-67 citrate in staging soft tissue sarcoma of the extremity. J Bone Joint Surg 1987;69A:886–891.

    Google Scholar 

  32. Schwarz HS, Jones CK. The efficacy of gallium scintigraphy in detecting malignant soft tissue neoplasms. Ann Surg 1992;215:78–82.

    Google Scholar 

  33. Sato O, Kawai A, Ozaki T, Kunisada T, Danura T, Inoue H. Value of thallium-201 scintigraphy in bone and soft tissue tumors. J Orthop Sci 1998;3(6):297–303.

    Article  PubMed  CAS  Google Scholar 

  34. Garcia JR, Kim EE, Wong FCL, et al. Comparison of fluorine-18-FDG-PET and technetium-99m-MIBI SPECT in evaluation of musculoskeletal sarcomas. J Nucl Med 1996;37:1476–1479.

    PubMed  CAS  Google Scholar 

  35. Ohta H, Endo K, Fujita T, et al. Clinical evaluation of tumor imaging using 99mTc(V) dimercaptosuccinic acid, a new tumor seeking agent. Nucl Med Commun 1988;9:105–116.

    PubMed  CAS  Google Scholar 

  36. McLean RG, Murray IPC. Scintigraphic patterns in certain primary bone malignancies. Clin Radiol 1984;35:379–384.

    Article  PubMed  CAS  Google Scholar 

  37. Simon MA, Kirchener PT. Scintigraphic evaluation of primary bone tumors: comparison of technetium-99m phosphonate and gallium citrate imaging. J Bone J Surg 1980;62A:758–764.

    Google Scholar 

  38. Caner B, Kitapci M, Aras T, Erbengi G, Ugur O, Bekdik C. Increased accumulation of hexakis (2-methoxyisobutylisonitrile) technetium (99m) in osteosarcoma and it metastatic lymph nodes. J Nucl Med 1991;32:1977–1978.

    PubMed  CAS  Google Scholar 

  39. Adler LP, Blair HF, Makley JT, et al. Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 1991;32:1508–1512.

    PubMed  CAS  Google Scholar 

  40. Adler LP, Blair HF, Williams RP, et al.. Grading liposarcomas with PET using [18F]FDG. J Comput Assist Tomogr 1990;14:960–962.

    Article  PubMed  CAS  Google Scholar 

  41. Griffeth LK, Dehdashti F, McGuire AH, et al. PET evaluation of soft tissue masses with fluorine-18 fluoro-2-deoxy-d-glucose. Radiology 1992;182:185–194.

    PubMed  CAS  Google Scholar 

  42. Schwarzbach MHM, Dimitrakopolou-Strauss A, Willeke F, et al. Clinical value of [18-F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann Surg 2000;231:380–386.

    Article  PubMed  CAS  Google Scholar 

  43. Schwarzbach M, Willeke F, Dimitrakopoulou Strauss A, et al. Functional imaging and detection of local recurrence in soft tissue sarcomas by positron emission tomography. Anticancer Res 1999;19:1343–1349.

    PubMed  CAS  Google Scholar 

  44. Lucas JD, O’Doherty MJ, Cronin BF, et al. Prospective evaluation of soft tissue masses and sarcomas using fluorodeoxyglucose positron emission tomography. Br J Surg 1999;86:550–556.

    Article  PubMed  CAS  Google Scholar 

  45. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 1999;26:22–30.

    Article  PubMed  CAS  Google Scholar 

  46. Nieweg OE, Pruim J, van Ginkel RJ, et al. Fluorine-18-fluorodeoxyglucose PET imaging of soft-tissue sarcoma. J Nucl Med 1996;37(2):257–261.

    PubMed  CAS  Google Scholar 

  47. Eary JF, Conrad EU, Bruckner JD, et al. Quantitative [F-18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res 1998;4(5):1215–1220.

    PubMed  CAS  Google Scholar 

  48. Eary JF, Mankoff DA. Tumor metabolic rates in sarcoma using FDG-PET. J Nucl Med 1998;39:250–254.

    PubMed  CAS  Google Scholar 

  49. Dimitrakopolou-Strauss A, Strauss LG, Schwarzbach M, et al. Dynamic PET 18F-FDG studies in patients with primary and recurrent soft tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 2001;42:713–720.

    Google Scholar 

  50. Kaplan AM, Chen K, Lawson MA, Wodrich DL, Bonstelle CT, Reiman EM. Positron emission tomography in children with neurofibromatosis. 1. J Child Neurol 1997;12:499–506.

    Article  PubMed  CAS  Google Scholar 

  51. Ferner R, Lucas JD, O’Doherty MJ, et al. Evaluation of 18fluorodeoxyglucose positron emission tomography (18FDG-PET) in the detection of malignant peripheral nerve sheath tumors arising from within plexiform neurofibromas in neurofibromatosis. 1. J Neurol Neurosurg Psychiatry 2000;68:353–357.

    Article  PubMed  CAS  Google Scholar 

  52. Boerner AR, Weckesser M, Herzog H, et al. Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med 1999;26:226–230.

    Article  PubMed  CAS  Google Scholar 

  53. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 1994;35:1308–1312.

    PubMed  CAS  Google Scholar 

  54. Schulte M, Brecht Krauss D, Heymer B, et al. Fluorodeoxyglucose positron emission tomography of soft tissue tumors: is a non-invasive determination of biological activity possible? Eur J Nucl Med 1999;26:599–605.

    Article  PubMed  CAS  Google Scholar 

  55. Watanabe H, Shinozaki T, Yanagawa T. Glucose metabolic analysis of musculoskeletal tumors using fluorine-18-FDG-PET as an aid to preoperative planning. J Bone Joint Surg [Br] 2000;82:760–767.

    Article  CAS  Google Scholar 

  56. Watanabe H, Inoue T, Shinozaki T, et al. PET imaging of musculoskeletal tumors with fluorine-18 a-methyl tyrosine: comparison with fluorine-18 fluorodeoxyglucose PET. Eur J Nucl Med 2000;27:1509–1517.

    Article  PubMed  CAS  Google Scholar 

  57. Kole AC, Plaat BBC, Hoekstra HJ, Vaalburg W, Molenaar WM. FDG and L-1-[11C]-tyrosine imaging of soft-tissue tumors before and after therapy. J Nucl Med 1999;40:381–386.

    PubMed  CAS  Google Scholar 

  58. Kole AC, Nieweg OE, Hoekstra HJ, van Horn JR, Koops HS, Vaalburg W. Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med 1998;39(5):810–815.

    PubMed  CAS  Google Scholar 

  59. Schulte M, Brecht Krauss D, Heymer B, et al. Grading of tumors and tumor-like lesions of bone: evaluation by FDG PET. J Nucl Med 2000;41:1695–1701.

    PubMed  CAS  Google Scholar 

  60. Schulte M, Brecht Krauss D, Werner M, et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 1999;40:1637–1643.

    PubMed  CAS  Google Scholar 

  61. Dehdashti F, Siegel BA, Griffeth LK, et al. Benign versus malignant intraosseous lesions: discrimination by means of PET with 2-[F-18] fluoro-2-deoxy-D-glucose. Radiology 1996;200:243–247.

    PubMed  CAS  Google Scholar 

  62. Aoki J, Watanabe H, Shinozaki T, Tokunaga M, Inoue T, Endo K. FDG-PET in differential diagnosis and grading of chondrosarcomas. J Comput Assist Tomog 1999;23:603–608.

    Article  CAS  Google Scholar 

  63. Lee FY-I, Yu J, Chang S-S, Fawwaz R, Parisien MV. Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J Bone Joint Surg 2004;86(12):2677–2685.

    PubMed  Google Scholar 

  64. Eary JF, O’Sullivan F, Powitan Y, et al. Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med 2002;29:1149–1154.

    Article  CAS  Google Scholar 

  65. van Ginkel RJ, Kole AC, Nieweg OE, et al. L-[1-11C]-Tyrosine PET to evaluate response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcoma and skin cancer. J Nucl Med 1999;40(2):262–267.

    PubMed  Google Scholar 

  66. Lucas JD, O’Doherty MJ, Wong JCH et al. Evaluation of the role of fluoro-deoxyglucose in the follow up management of soft tissue sarcomas. J Bone Joint Surg 1998;80B:441–447.

    Article  Google Scholar 

  67. Tse N, Hoh C, Hawkins R, Phelps M, Glaspy J. Positron emission tomography diagnosis of pulmonary metastases in osteogenic sarcoma. Am J Clin Oncol 1994;17:22–25.

    PubMed  CAS  Google Scholar 

  68. Shulkin BL, Mitchell DS, Ungar DR, et al. Neoplasms in a pediatric population: 2-[F-18]-fluoro-2-deoxy-D-glucose PET studies. Radiology 1995;194(2):495–500.

    PubMed  CAS  Google Scholar 

  69. Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O. FDGPET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med 2000;27:1305–1311.

    Article  PubMed  CAS  Google Scholar 

  70. Potter DA, Glenn J, Kinsella T, et al. Patterns of recurrence in patients with high grade soft tissue sarcomas. J Clin Oncol 1985;3:353–366.

    PubMed  CAS  Google Scholar 

  71. Kole AC, Nieweg OE, van Ginkel RJ, et al. Detection of local recurrence of soft-tissue sarcoma with positron emission tomography using [18F]fluorodeoxyglucose. Ann Surg Oncol 1997;4:57–63.

    Article  PubMed  CAS  Google Scholar 

  72. Hain SF, O’Doherty MJ, Lucas JD, et al. Fluorodeoxyglucose PET in the evaluation of amputations for soft tissue sarcoma. Nucl Med Commun 1999;20:845–848.

    Article  PubMed  CAS  Google Scholar 

  73. Franzius C, Daldrup-Link HE, Wagner-Bohn A, et al. FDG PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 2002;13:157–160.

    Article  PubMed  CAS  Google Scholar 

  74. Sarcoma Meta-analysis Collaboration. Adjuvant chemotherapy for localised resectable soft tissue sarcoma in adults. Cochrane Library 2000;3:1–26.

    Google Scholar 

  75. Jones DN, McCowage GB, Sostman HD, et al. Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J Nucl Med 1996;37(9):1438–1444.

    PubMed  CAS  Google Scholar 

  76. Ramanna L, Waxman A, Binney G, Waxman S, Mirra J, Rosen G. Thallium-201 scintigraphy in bone sarcoma: comparison with gallium-67 and MDP in the evaluation of therapeutic response. J Nucl Med 1990;31:567–572.

    PubMed  CAS  Google Scholar 

  77. Knop J, Delling G, Heise U, Winkler K. Scintigraphic evaluation of tumor regression during preoperative chemotherapy of osteosarcoma. Skeletal Radiol 1990;19:165–172.

    Article  PubMed  CAS  Google Scholar 

  78. Estes DN, Magill HL, Thompson EI, Hayes FA. Primary Ewing sarcoma: follow up with Ga-67 scintigraphy. Radiology 1990;177:449–453.

    PubMed  CAS  Google Scholar 

  79. Ohtomo K, Terui S, Yokoyama R, et al. Thallium-201 scintigraphy to assess effect of chemotherapy in osteosarcoma. J Nucl Med 1996;37:1444–1448.

    PubMed  CAS  Google Scholar 

  80. Erlemann R, Sciuk J, Bosse A, et al. Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 1990;175:791–796.

    PubMed  CAS  Google Scholar 

  81. Ross B, Helsper JT, Cox IJ. Osteosarcoma and other neoplasms of bone: magnetic resonance spectroscopy to monitor therapy. Arch Surg 1987;122:1464–1469.

    PubMed  CAS  Google Scholar 

  82. Hawkins DS, Rajendran JG, Conrad EU, Bruckner JD, Eary JF. Evaluation of chemotherapy response in paediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer (Phila) 2002;94:3277–3284.

    Article  PubMed  CAS  Google Scholar 

  83. Shields AF, Mankoff DA, Link JM, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998;39(10):1757–1762.

    PubMed  CAS  Google Scholar 

  84. Plaat B, Kole A, Mastik M, Hoekstra H, Molenaar W, Vaalburg W. Protein synthesis rate measured with L-[1-11C]tyrosine positron emission tomography correlates with mitotic activity and MIB-1 antibody-detected proliferation in human soft tissue sarcomas. Eur J Nucl Med 1999;26(4):328–332.

    Article  PubMed  CAS  Google Scholar 

  85. Casciari JJ, Graham MM, Rasey JS. A modeling approach for quantifying tumor hypoxia with [F-18] fluoromisonidazole PET time activity data. Med Phys 1995;22:1227–1139.

    Article  Google Scholar 

  86. Moulder JE, Rockwell S. Tumor hypoxia: its impact on cancer therapy. Br J Radiol 1987;26:638–648.

    Google Scholar 

  87. Rasey JS, Koh WJ, Evans ML, et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [F-18]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Biol Phys 1996;36:417–428.

    Article  CAS  Google Scholar 

  88. Peters LJ, Withers HR, Thames HD, Fletcher GH. Keynote address. The problem: tumor radioresistance in clinical radiotherapy. Int J Radiat Oncol Biol Phys 1982;8:101–108.

    PubMed  CAS  Google Scholar 

  89. Rockwell S. Effect of some proliferative and environmental factors on the toxicity of mitomycin C to tumor cells in vitro. Int J Cancer 1986;38:229–235.

    PubMed  CAS  Google Scholar 

  90. Adams GE, Flockhart IR, Smithen CE, et al. Electron-affinic sensitisation. VII. A correlation between structures, one electron reduction potentials and efficiencies of nitroimidazoles as hypoxic cell sensitisers. Radiat Res 1976;67:9–20.

    PubMed  CAS  Google Scholar 

  91. Chapman JD, Baer K, Lee J. Characteristics of the metabolisminduced binding of misonidazole to hypoxic mammalian cells. Cancer Res 1983;43:1523–1528.

    PubMed  CAS  Google Scholar 

  92. Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995;22:265–280.

    Article  PubMed  CAS  Google Scholar 

  93. Lewis JS, Sharp TL, Laforest R, Fujibayashi Y, Welch MJ. Tumor uptake of copper-diacetyl-bis(N4-methylsemicarbazone): effect of changes in tissue oxygenation. J Nucl Med 2001; 42:655–661.

    PubMed  CAS  Google Scholar 

  94. Rajendran JG, Wilson DC, Conrad EU, et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 2003;30:695–704.

    Article  PubMed  CAS  Google Scholar 

  95. Bastiaannet E, Groen H, Jager PL, et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas: a systematic review and meta-analysis. Cancer Treat Rev 2004;30(1):83–101.

    Article  PubMed  CAS  Google Scholar 

  96. Ioannidis JP, Lau J. 18F-FDG PET for the diagnosis and grading of soft-tissue sarcoma: a meta-analysis. J Nucl Med 2003; 44(5):717–724.

    PubMed  Google Scholar 

  97. Somer EJ, Marsden PK, Benatar NA, Goodey J, O’Doherty MJ, Smith MA. PET-MR image fusion in soft tissue sarcoma: accuracy, reliability and practicality of interactive point-based and automated mutual information techniques. Eur J Nucl Med Mol Imaging 2003;30(1):54–62.

    Article  PubMed  Google Scholar 

  98. Hain SF, O’Doherty MJ, Bingham J, Chinyama C, Smith MA. Can FDG PET be used to successfully direct preoperative biopsy of soft tissue tumors? Nucl Med Commun 2003;24(11):1139–1143.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

O’Doherty, M.J., Smith, M.A. (2006). PET and PET/CT in Sarcoma. In: Valk, P.E., Delbeke, D., Bailey, D.L., Townsend, D.W., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London . https://doi.org/10.1007/1-84628-187-3_17

Download citation

  • DOI: https://doi.org/10.1007/1-84628-187-3_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-971-5

  • Online ISBN: 978-1-84628-187-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics