Skip to main content

Advanced Methods for the Analysis of Semiconductor Manufacturing Process Data

  • Chapter
Book cover Advanced Techniques in Knowledge Discovery and Data Mining

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Abstract

The analysis, control, and optimization of manufacturing processes in the semiconductor industry are applications with significant economic impact. Modern semiconductor manufacturing processes feature an increasing number of processing steps with an increasing complexity of the steps themselves to generate a flood of multivariate monitoring data. This exponentially increasing complexity and the associated information processing and productivity demand impose stringent requirements, which are hard to meet using state-of-the-art monitoring and analysis methods and tools. This chapter deals with the application of selected methods from soft computing to the analysis of deviations from allowed parameters or operation ranges, i.e., anomaly or novelty detection, and the discovery of nonobvious multivariate dependencies of the involved parameters and the structure in the data for improved process control. Methods for online observation and offline interactive analysis employing novelty classification, dimensionality reduction, and interactive data visualization techniques are investigated in this feasibility study, based on an actual application problem and data extracted from a CMOS submicron process. The viability and feasibility of the investigated methods are demonstrated. In particular, the results of the interactive data visualization and automatic feature selection methods are most promising. The chapter introduces to semiconductor manufacturing data acquisition, application problems, and the regarded soft-computing methods in a tutorial fashion. The results of the conducted data analysis and classification experiments are presented, and an outline of a system architecture based on this feasibility study and suited for industrial service is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E., and Korst, J., Simulated Annealing and Boltzmann Machines, Addison Wesley, 1988.

    Google Scholar 

  2. Semiconductor Industry Association, International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA, http://notes.sematech.org/ntrs/Rdmpmem.nsf, 1999.

    Google Scholar 

  3. Braha, D., and Shmilovici, A., Data mining for improving a cleaning process in the semiconductor industry, IEEE Transactions on Semiconductor Manufacturing, 15(1):91–101, Feb. 2002.

    Article  Google Scholar 

  4. Broomhead, D. S., and Lowe, D., Multivariable functional interpolation and adaptive networks, in Complex Systems 2, pp. 321–55, 1988.

    MATH  MathSciNet  Google Scholar 

  5. Collins, E., Glosh, S., and Scofield, C., Neural network decision learning system applied to risk analysis: Mortgage underwriting and delinquency risk assessment, in DARPA Neural Network Study Final Report — Appendix E, Technical Report 840, pp. 65–79. Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, March 1989.

    Google Scholar 

  6. Cooper, L. N., Elbaum, C., Reilly, D. L., and Scofield, C. L., Parallel, multiunit, adaptive, nonlinear pattern class separator and identifier, in United States Patents, Patent Number: 4,760,604, July 1988.

    Google Scholar 

  7. Quadrillion Corporation, Q-Yield, http://www.quadrillion.com, 2002.

    Google Scholar 

  8. Devijver, P. A., and Kittler, J., On the edited nearest neighbor rule, in Proc. 5th International Conference on Pattern Recognition, vol. 1, pp. 72–80, Dec. 1980.

    Google Scholar 

  9. Dzwinel, W., How to make Sammon’s mapping useful for multidimensional data structure analysis, in Pattern Recognition, 27(7), Elsevier Science Ltd, pp. 949–59, 1994.

    Article  Google Scholar 

  10. Eberhardt, M., Hecht, R., and König, A., Einsatz des Konzepts Machine-in-the-Loop-Learning zum individuellen, robusten Anlernen von Laborrobotersystemen, in KI-Zeitschrift, No. 2, pages 44–7, 2002.

    Google Scholar 

  11. Eberhardt, M., Kossebau, F. K. H., and König, A., Automatic feature selection by genetic algorithms, in Proc. Int Conf. on Artificial Neural Networks and Genetic Algorithms, ICANNGA01, pages 256–9, Prague, April 2001.

    Google Scholar 

  12. Fukunaga, K., Introduction to Statistical Pattern Recognition. Academic Press, Harcourt Brace Jovanovich, Publishers, Boston, San Diego, New York, London, Sydney, Tokyo, Toronto, 1990.

    MATH  Google Scholar 

  13. Gates, G. W., The reduced nearest neighbour rule, in IEEE Transactions on Information Theory, vol. IT-18, pp. 431–3, 1972.

    Article  Google Scholar 

  14. Goser, K., Marks, K. M., Rückert, U., and Tryba, V., Selbstorganisierende Karten zur Prozessüberwachung und-voraussage, in Proc. 3. Int. GI-Kongress über wissensbasierte Systeme, München (16.-17. Okt.), pp. 225–37. Informatik Fachberichte Nr. 227, Berlin: Springer Verlag, 1989.

    Google Scholar 

  15. Katayama, R., Watanabe, M., Kuwata, K., Kajitani, Y., and Nishida, Y., Performance of self-generating radial basis function for function approximation, in Proc. International Joint Conference on Neural Networks IJCNN’93, Nagoya, Japan, Vol.I, pp. 471–4, IEEE, 1993.

    Google Scholar 

  16. Kittler, J., Feature Selection and Extraction, Academic Press, Inc., Tzai. Y. Young, King Sun-Fu, Publishers, Orlando, San Diego, New York, Austin, London, Montreal, Sydney, Tokyo, Toronto, 1986.

    Google Scholar 

  17. Kober, R., Howard, C., and Bock, P., Anomaly detection in video images, in Proc. 5th International Conference on Neural Networks and Their Applications NEURO-NIMES’92, 1992.

    Google Scholar 

  18. Köhler, C., König, A., Temelkova-Kurktschiev, T., and Hanefeld, M., Application of interactive multivariate data visualisation to the analysis of patients findings in metabolic research, in Proc. 3rd Int. Conf. on Knowledge-Based Intelligent Information Engineering Systems KES’99, pp. 397–402, Adelaide, Australia, Aug. 1999.

    Google Scholar 

  19. Kohonen, T., Self-Organization and Associative Memory, Springer-Verlag, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, 1989.

    Google Scholar 

  20. König, A., Neuronale Strukturen zur sichtgestützten Oberflächeninspektion von Objekten in industrieller Umgebung, Darmstädter Dissertation D 17 (available from http://www.iee.et.tu-dresden.de/koeniga), Sept. 1995.

    Google Scholar 

  21. König, A., A novel supervised dimensionality reduction technique by feature weighting for improved neural network classifier learning and generalization, in Proc. 6th Int. Conf. on Soft Computing and Information/Intelligent Systems IIZUKA’2000, pp. 746–53, Iizuka, Fukuoka, Japan, Oct. 2000.

    Google Scholar 

  22. König, A., Dimensionality reduction techniques for multivariate data classification, interactive visualization, and Analysis — Systematic feature selection vs. extraction, in Proc. 4th Int. Conf. on Knowledge-Based Intelligent Engineering Systems & Allied Technologies KES’2000, pp. 44–56, University of Brighton, UK, Aug. 2000.

    Google Scholar 

  23. König, A., Interactive visualization and analysis of hierarchical neural projections for data mining. in IEEE Trans. on Neural Networks, Special Issue for Data Mining and Knowledge Discovery, pp. 615–24, May 2000.

    Google Scholar 

  24. König, A., Dimensionality reduction techniques for interactive visualisation, exploratory data analysis, and classification, in Pal, N. R. (ed.), Pattern Recognition in Soft Computing Paradigm, vol. 2, chap. 1, pp. 1–37, World Scientific, FLSI Soft Computing Series, Singapore, Jan. 2001.

    Google Scholar 

  25. König, A., Blutner, F. E., Eberhardt, M., and Wenzel, R., Design and application of an acoustic database navigator for the interactive analysis of psychoacoustic sound archives and sound engineering, in Hsu, C. (ed.), Advanced Signal Processing Technology by Soft Computing, vol. 1, chap. 3, pp. 36–65, World Scientific, FLSI Soft Computing Series, Singapore, Nov. 2000.

    Google Scholar 

  26. König, A., Bulmahn, O., and Glesner, M., Systematic methods for multivariate data visualization and numerical assessment of class separability and overlap in automated visual industrial quality control, in Proc. 5th British Machine Vision Conf. BMVC’94, pp. 195–204, Sept. 1994.

    Google Scholar 

  27. König, A., Eberhardt, M., and Wenzel, R., A transparent and flexible development environment for rapid design of cognitive systems, in Proc. EUROMICRO’ 98 conference, Workshop Computational Intelligence, Publisher IEEE CS, pp. 655–62, Västeraas, Sweden, Aug. 25–27 1998.

    Google Scholar 

  28. König, A., Eberhardt, M., and Wenzel, R., QuickCog self-learning recognition system — Exploiting machine learning techniques for transparent and fast industrial recognition system design, in Image Processing Europe, pp. 10–9, PennWell, Sept./Oct. 1999.

    Google Scholar 

  29. König, A., Eberhardt, M., and Wenzel, R., QuickCog — HomePage, in http://www.iee.et.tu-dresden.de/~koeniga/QuickCog.html, 2000.

    Google Scholar 

  30. König, A., Raschhofer, R., and Glesner, M., A novel method for the design of radial-basis-function networks and its implication for knowledge extraction, in IEEE International Conference on Neural Networks, vol. III, Orlando, pp. 1804–9, Piscataway, NJ, June/July 1994.

    Google Scholar 

  31. König, A., Windirsch, P. and Glesner, M., Massively parallel VLSIimplementation of a dedicated neural network for anomaly detection in automated visual quality control, in Proc. 4th Int. Conf. on Microelectronics for Neural Networks and Fuzzy Systems, pp. 354–63, Sept. 1994.

    Google Scholar 

  32. Koontz, W. L. G., and Fukunaga, K., A nonlinear feature extraction algorithm using distance transformation, in IEEE Transactions on Computers C-21, no. 1, pp. 56–63, 1972.

    Article  Google Scholar 

  33. Kozma, R., Kitamura, M., Sakuma, M., and Yokoyama, Y., Anomaly detection by neural network models and statistical time series analysis, in Proc. International Conference on Neural Networks ICNN’94, Orlando, Vol.V, pp. 3207–10, IEEE, 1994.

    Google Scholar 

  34. Lee, R. C. T., Slaggle, J. R., and Blum, H., A triangulation method for the sequential mapping of points from N-space to two-space, in IEEE Transactions on Computers C-26, pp. 288–92, 1977.

    Google Scholar 

  35. Lemarie, B., Size reduction of a radial basis function network, in Proc. International Joint Conference on Neural Networks IJCNN’93, Nagoya, Japan, Vol.I, pp. 331–4, IEEE, 1993.

    Article  Google Scholar 

  36. Ludwig, L., Epperlein, U., Kuge, H.-H., Federl, P., Koppenhoefer, B., and Rosenstiel, W., Classification of fingerprints of process control monitoringdata with self-organizing maps, in Proc. of EANN97, Stockholm, June 16, pp. 107–12, 1997.

    Google Scholar 

  37. Ludwig, L., Pelz, E., Kessler, M., Sinderhauf, W., Koppenhoefer, B., and Rosenstiel, W., Prediction of functional yield of chips in semiconductor industry applications, in Proc. of EANN98, Gibraltar, June 12–14, pp. 157–161, 1998.

    Google Scholar 

  38. Marks, K. M., and Goser, K., Analysis of VLSI process data based on selforganizing feature maps, in Proc. of Neuro-Nimes, Nimes (15.–17. Nov.), pp. 337–48, 1988.

    Google Scholar 

  39. Masa, P., Hoen, K., and Wallinga, H., A high-speed analog neural processor, in IEEE Micro, pp. 40–50, IEEE Computer Society, June 1994.

    Google Scholar 

  40. Moore, G. E., Cramming more components onto integrated circuits, Electronics Magazine, 38:114–7, 1965.

    Google Scholar 

  41. Parzen, E., On estimation of a probability density function and mode, in Ann. Math. Stat., No.33, p. 1065, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  42. Platt, J., A resource-allocating network for function interpolation, in Neural Computation, Vol.3, pp. 213–25, 1991.

    Article  MathSciNet  Google Scholar 

  43. Poggio, T., and Girosi, F., Networks for approximation and learning, in Proc. IEEE, Vol.78, No.9, pp. 1481–97, 1990.

    Article  Google Scholar 

  44. Powell, M. J. D., Radial Basis Functions for Multivariable Interpolation, Clarendon Press, Oxford, 1987.

    Google Scholar 

  45. Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn, L. A., and Jain, A. K., Dimensionality reduction using genetic algorithms, IEEE Transactions on Evolutionary Computation, 4(2):164–71, July 2000.

    Article  Google Scholar 

  46. Reilly, D. L., Cooper, L. N., and Elbaum, C., A neural model for category learning, in Biological Cybernetics, 45, pp. 35–41, 1982.

    Article  Google Scholar 

  47. Rückert, U., Softwareumgebung DANI zur schnellen explorativen Analyse sehr grosser Datenbestände, http://wwwhni.uni-paderborn.de/sct/cognitronics/#, 2002.

    Google Scholar 

  48. Sammon, J. W., A nonlinear mapping for data structure analysis, in IEEE Transactions on Computers C-18, No.5, pp. 401–9, 1969.

    Article  Google Scholar 

  49. Sammon, J. W., Interactive pattern analysis and classification, in IEEE Transactions on Computers C-19, No.7, pp. 594–616, 1970.

    Article  Google Scholar 

  50. Smith, S. D. G., and Escobedo, R. A., Engineering and manufacturing applications of ART-1 neural networks, in Proc. International Conference on Neural Networks ICNN’94, Orlando, Vol.VI, pp. 3780–5, IEEE, 1994.

    Google Scholar 

  51. IDS Software Systems, dataPOWERSsc — Software for Semiconductor Analysis and Data Management, http://www.idsusa.com/site/products/datapower.html, 2002.

    Google Scholar 

  52. Knights Technology, KnightsYield Management Products (Data Explorer, Yield Manager), http://www.eletroglas.com/products/knights_datasheets/, 2002.

    Google Scholar 

  53. Turney, P., Data engineering for the analysis of semiconductor manufacturing data, in Proc. of IJCAI Workshop on Data Engineering for Inductive Learning, pp. 1–10, 1995.

    Google Scholar 

  54. Ultsch, A., and Siemon, H. P., Exploratory data analysis: Using Kohonen networks on transputers, in Interner Bericht Nr. 329 Universität Dortmund, Dezember 1989, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

König, A., Gratz, A. (2005). Advanced Methods for the Analysis of Semiconductor Manufacturing Process Data. In: Pal, N.R., Jain, L. (eds) Advanced Techniques in Knowledge Discovery and Data Mining. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-183-0_2

Download citation

  • DOI: https://doi.org/10.1007/1-84628-183-0_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-867-1

  • Online ISBN: 978-1-84628-183-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics