Skip to main content

Natural History and Impact of Interventions on Coronary Calcium

  • Chapter
Cardiac CT Imaging
  • 1003 Accesses

Conclusion

The data presented in this chapter provide evidence that non-invasive CT imaging can be used to monitor the effectiveness of medical therapy by following changes in burden of calcified plaque. Nonetheless, there are some limitations inherent with the technology currently available. There is a strong need to standardize the scoring methods and assess the equivalence of the existing CT equipment. Additionally, the rigid application of a density threshold of 130 HU to define the presence of vascular or valvular calcification in all patients limits our ability to identify more recent, less densely calcified and therefore softer plaques. Though further prospective studies will be necessary to confirm the clinical significance of the findings herein summarized, it is quite evident that the effectiveness of anti-atherosclerotic therapy can be gauged with sequential CT imaging. The application of this technology will greatly facilitate primary and secondary prevention studies by allowing a great reduction in the number of patients needed to show effectiveness of therapy. Simultaneously, a physician’s effort to implement preventive measures could be gratified by the ability to measure the effectiveness of the applied remedies. Interventions directed at modifying risk factors associated with atherosclerosis besides LDL such as small-density LDL, Lp(a), low HDL, elevated homocysteine levels, and use of anti-viral and anti-bacterial agents will likely be the focus of future research.

With continued improvements in CT technology and expanded clinical experience, it is hoped that the role of coronary calcium in primary and secondary prevention will be further defined and become more readily accepted by a wider circle of physician users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strong JP, Malcom GT, McMahan A, et al. Prevalence and extent of atherosclerosis in adolescents and young adults. The Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 1999; 281:727–735.

    Article  PubMed  CAS  Google Scholar 

  2. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL. Bone morphogenic protein expression in human atherosclerotic lesions. J Clin Invest 1993;91:1800–1809.

    PubMed  CAS  Google Scholar 

  3. Fitzpatrick LA, Severson A, Edwards WD, Ingram RT. Diffuse calcification in human coronary arteries: association of osteopontin with atherosclerosis. J Clin Invest 1994;94:1597–1604.

    PubMed  CAS  Google Scholar 

  4. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL. High Expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 1994;93:2393–2402.

    Article  PubMed  CAS  Google Scholar 

  5. Proudfoot D, Davies JD, Skepper JN, Weissberg PL, Shanahan CM. Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation 2002;106:3044–3050.

    Article  PubMed  CAS  Google Scholar 

  6. Bini A, Mann KG, Kudryk BJ, Schen FJ. Noncollagenous bone matrix proteins, calcification and thrombosis in carotid artery atherosclerosis. Arterioscl Thromb Vasc Biol 1999;19:1852–1861.

    PubMed  CAS  Google Scholar 

  7. Stary HC. Natural history of calcium deposits in atherosclerosis progression and regression. Z Kardiol 2000;89(suppl 2):28–35.

    Article  PubMed  Google Scholar 

  8. Williams JK, Sukhova GK, Herrington DM, Libby P. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol 1998;31:684–691.

    Article  PubMed  CAS  Google Scholar 

  9. Daoud AS, Jarmolych J, Augustyn JM, et al. Sequential morphologic studies of regression of advanced atherosclerosis. Arch Pathol 1981;105:233–239.

    CAS  Google Scholar 

  10. Clarkson TB, Bond MG, Bullock BC, et al. A study of atherosclerosis regression in Macaca mulatta. IV. Changes in coronary arteries from animals with atherosclerosis induced for 19 months and then regressed for 24 months or 48 months at plasma cholesterol concentrations of 300 or 200mg/dl. Exp Mol Pathol 1981;34:345–368.

    Article  PubMed  CAS  Google Scholar 

  11. Agatston AS, Janowitz WR, Hildner JR, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography scanning. J Am Coll Cardiol 1990;15:827–832.

    Article  PubMed  CAS  Google Scholar 

  12. Sangiorgi G, Rumberger JA, Severson A, et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using non-decalcifying methodology. Electron beam computed tomography and coronary artery disease: scanning for coronary artery calcification. J Am Coll Cardiol 1998;31:126–133.

    Article  PubMed  CAS  Google Scholar 

  13. Callister TQ, Cooil B, Raya S, Lippolis NJ, Russo DJ, Raggi P. Coronary artery disease: improved reproducibility of calcium scoring with electron-beam CT volumetric method. Radiology 1998;208:807–814.

    PubMed  CAS  Google Scholar 

  14. Rumberger JA, Kaufman L. A rosetta stone for coronary calcium risk stratification: Agatston, volume, and mass scores in 11,490 individuals. AJR Am J Roentgenol 2003;181:743–748.

    PubMed  Google Scholar 

  15. Jukema JW, Bruschke AV, van Boven AJ, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995;91:2528–2540.

    PubMed  CAS  Google Scholar 

  16. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990;323:1289–1298.

    Article  PubMed  CAS  Google Scholar 

  17. Callister TQ, Raggi P, Cooil B. Effects of HMG-CoA reductase inhibitors on coronary artery disease. N Engl J Med 1998;339:1972–1977.

    Article  PubMed  CAS  Google Scholar 

  18. Budoff MJ, Lane KL, Bakhsheshi H, et al. Rates of progression of coronary calcium by electron beam tomography. Am J Cardiol 2000;86:8–11.

    Article  PubMed  CAS  Google Scholar 

  19. Achenbach S, Dieter R, Pohle K, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification. Circulation 2002;106:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  20. Hoffmann U, Derfler K, Haas M, Stadler A, Brady TJ, Kostner K. Effects of combined low density lipoprotein apheresis and aggressive statin therapy on coronary calcified plaque as measured by computed tomography. Am J Cardiol 2003;91:461–464.

    Article  PubMed  CAS  Google Scholar 

  21. Taylor AJ, Kent SM, Flaherty PJ, Coyle LC, Markwood TT, Vernalis MN. ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation 2002;106:2055–2060.

    Article  PubMed  CAS  Google Scholar 

  22. Levine GN, Keaney JF Jr, Vita JA. Cholesterol reduction in cardiovascular disease: clinical benefits and possible mechanisms. N Engl J Med 1995;332:512–521.

    Article  PubMed  CAS  Google Scholar 

  23. Hsia J, Klouj A, Prasad A, Burt J, Adams-Campbell LL, Howard BV. Progression of coronary calcification in healthy postmenopausal women. BMC Cardiovasc Disord 2004;4:21.

    Article  PubMed  Google Scholar 

  24. Raggi P, Davidson M, Callister TQ, et al. Aggressive versus moderate lipid-lowering therapy in hypercholesterolemic post-menopausal women: Beyond Endorsed Lipid Lowering With EBT Scanning (BELLES). Circulation 2005;112(4):563–571.

    Article  PubMed  CAS  Google Scholar 

  25. Cannon CP, Braunwald E, McCabe CH, et al. Comparison of intensive and moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004;350:1495–1504.

    Article  PubMed  CAS  Google Scholar 

  26. Smilde TJ, van Wissen S, Wollersheim H, Trip MD, Kastelein JJ, Stalenhoef AF. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet 2001;357:577–581.

    Article  PubMed  CAS  Google Scholar 

  27. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis. A randomized controlled trial. JAMA 2004;291:1071–1080.

    Article  PubMed  CAS  Google Scholar 

  28. Hecht HS, Harman SM. Comparison of the effects of atorvastatin versus simvastatin on subclinical atherosclerosis in primary prevention as determined by electron beam tomography. Am J Cardiol 2003;91:42–45.

    Article  PubMed  CAS  Google Scholar 

  29. Hecht HS, Harman SM. Relation of aggressiveness of lipid-lowering treatment to changes in calcified plaque burden by electron beam tomography. Am J Cardiol 2003;92:334–336.

    Article  PubMed  Google Scholar 

  30. Wong ND, Kawakubo M, LaBree L, Azen SP, Xiang M, Detrano R. Relation of coronary calcium progression and control of lipids according to the National Cholesterol Education Program guidelines. Am J Cardiol 2004;94:431–436.

    Article  PubMed  CAS  Google Scholar 

  31. Snell-Bergeon JK, Hokanson JE, Jensen L, et al. Progression of coronary artery calcification in type 1 diabetes: the importance of glycemic control. Diabetes Care 2003;26:2923–2928.

    PubMed  Google Scholar 

  32. Rath M, Niedzwiecki A. Nutritional supplement program halts progression of early coronary atherosclerosis documented by ultrafast computed tomography. J Appl Nutr 1996;48:67–78.

    Google Scholar 

  33. Budoff MJ, Takasu J, Flores FR, et al. Inhibiting progression of coronary calcification using Aged Garlic Extract in patients receiving statin therapy: a preliminary study. Prev Med 2004;39:985–991.

    Article  PubMed  Google Scholar 

  34. Maniscalco BS, Taylor KA. Calcification in coronary artery disease can be reversed by EDTA-tetracycline long-term chemotherapy. Pathophysiology 2004;11:95–101.

    Article  PubMed  CAS  Google Scholar 

  35. US Renal Data System. USRDS 2004 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2004.

    Google Scholar 

  36. Longenecker JC, Coresh J, Powe NR, et al. Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: the CHOICE Study. J Am Soc Nephrol 2002;13:1918–1927.

    Article  PubMed  Google Scholar 

  37. Block G, Hulbert-Shearon T, Levin N, et al. Association of serum phosphorus and calcium × phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 1998;31:607–617.

    PubMed  CAS  Google Scholar 

  38. Guerin AP, London GM, Marchais SJ, et al. Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol Dial Transplant 2000;15:1014–1021.

    Article  PubMed  CAS  Google Scholar 

  39. Blacher J, Guerin AP, Pannier B, et al. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 2001;38:938–942.

    PubMed  CAS  Google Scholar 

  40. Raggi P, Boulay A, Chasan-Taber S, et al. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 2002;39:695–701.

    Article  PubMed  Google Scholar 

  41. London GM, Guerin AP, Marchais SJ, et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant 2003;18:1731–1740.

    Article  PubMed  Google Scholar 

  42. London GM. Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J Am Soc Nephrol 2003;14:S305–309.

    Article  PubMed  Google Scholar 

  43. Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004;15:2208–2218.

    Article  PubMed  CAS  Google Scholar 

  44. Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 2000;342:1478–1483.

    Article  PubMed  CAS  Google Scholar 

  45. Chertow GM, Burke SK, Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 2002;62:245–252.

    Article  PubMed  CAS  Google Scholar 

  46. Chertow GM, Burke SK, Dillon MA, Slatopolsky E. Long-term effects of sevelamer hydrochloride on the calcium × phosphate product and lipid profile of haemodialysis patients. Nephrol Dial Transplant 1999, 14:2907–2914.

    Article  PubMed  CAS  Google Scholar 

  47. Ferramosca E, Burke S, Chasan-Taber S, Ratti C, Chertow GM, Raggi P. Potential antiatherogenic and anti-inflammatory properties of sevelamer in maintenance hemodialysis patients. Am Heart J 2005;149(5):820–825.

    Article  PubMed  CAS  Google Scholar 

  48. Raggi P, James G, Burke S, et al. Decrease in thoracic vertebral bone attenuation with calcium-based phosphate binders in hemodialysis. J Bone Min Res 2005;20(5):764–772.

    Article  CAS  Google Scholar 

  49. Barengolts EI, Berman M, Kukreja SC, Kouznetsova T, Lin C, Chomka EV. Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcif Tissue Int 1998;62:209–213.

    Article  PubMed  CAS  Google Scholar 

  50. Sirola J, Sirola J, Honkanen R, et al. Relation of statin use and bone loss: a prospective population-based cohort study in early postmenopausal women. Osteoporos Int 2002;13:537–541.

    Article  PubMed  CAS  Google Scholar 

  51. Yang H, Curinga G, Giachelli CM. Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney Int 2004;66:2293–2299.

    Article  PubMed  CAS  Google Scholar 

  52. Reynolds JL, Joannides AJ, Skepper JN, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 2004;15:2857–2867.

    Article  PubMed  CAS  Google Scholar 

  53. Raggi P, Cooil B, Shaw LJ, et al. Progression of coronary calcification on serial electron beam tomography scanning is greater in patients with future myocardial infarction. Am J Cardiol 2003;92:827–829.

    Article  PubMed  Google Scholar 

  54. Raggi P, Callister T, Budoff M, Shaw L. Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy. Arterioscler Thromb Vasc Biol 2004;24:1272–1277.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Raggi, P. (2006). Natural History and Impact of Interventions on Coronary Calcium. In: Budoff, M.J., Shinbane, J.S., Achenbach, S., Raggi, P., Rumberger, J.A. (eds) Cardiac CT Imaging. Springer, London . https://doi.org/10.1007/1-84628-146-6_7

Download citation

  • DOI: https://doi.org/10.1007/1-84628-146-6_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-028-3

  • Online ISBN: 978-1-84628-146-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics