Skip to main content

Coronary Angiography after Revascularization

  • Chapter
Cardiac CT Imaging

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldman S, Zadina K, Moritz T, et al.; VA Cooperative Study Group #207/297/364. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol 2004;44:2149–2156.

    Article  PubMed  Google Scholar 

  2. Schwartz L, Kip KE, Frye RL, Alderman EL, Schaff HV, Detre KM; Bypass Angioplasty Revascularization Investigation. Coronary bypass graft patency in patients with diabetes in the Bypass Angioplasty Revascularization Investigation (BARI). Circulation 2002;106:2652–2658.

    Article  PubMed  Google Scholar 

  3. Lytle BW, Loop FD, Cosgrove DM, Ratliff NB, Easley K, Taylor PC. Long-term (5 to 12 years) serial studies of internal mammary artery and saphenous vein coronary bypass grafts. J Thorac Cardiovasc Surg 1985;89:248–258.

    PubMed  CAS  Google Scholar 

  4. Shi Y, O’Brien JE Jr, Mannion JD, et al. Remodeling of autologous saphenous vein grafts. The role of perivascular myofibroblasts. Circulation 1997;95:2684–2693.

    PubMed  CAS  Google Scholar 

  5. Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol 1996;28:616–626.

    Article  PubMed  CAS  Google Scholar 

  6. Brundage BH, Lipton MJ, Herfkens RJ, et al. Detection of patent coronary bypass grafts by computed tomography. A preliminary report. Circulation 1980;61:826–831.

    PubMed  CAS  Google Scholar 

  7. Daniel WG, Dohring W, Stender HS, Lichtlen PR. Value and limitations of computed tomography in assessing aortocoronary bypass graft patency. Circulation 1983;67:983–987.

    PubMed  CAS  Google Scholar 

  8. McKay CR, Brundage BH, Ullyot DJ, Turley K, Lipton MJ, Ebert PA. Evaluation of early postoperative coronary artery bypass graft patency by contrast-enhanced computed tomography. J Am Coll Cardiol 1983;2:312–317.

    PubMed  CAS  Google Scholar 

  9. Bateman TM, Gray RJ, Whiting JS, et al. Prospective evaluation of ultrafast cardiac computed tomography for determination of coronary bypass graft patency. Circulation 1987;75:1018–1024.

    PubMed  CAS  Google Scholar 

  10. Stanford W, Brundage BH, MacMillan R, et al. Sensitivity and specificity of assessing coronary bypass graft patency with ultrafast computed tomography: results of a multicenter study. J Am Coll Cardiol 1988;12:1–7.

    Article  PubMed  CAS  Google Scholar 

  11. Engelmann MG, von Smekal A, Knez A, et al. Accuracy of spiral computed tomography for identifying arterial and venous coronary graft patency. Am J Cardiol 1997;80:569–574.

    Article  PubMed  CAS  Google Scholar 

  12. Tello R, Hartnell GG, Costello P, Ecker CP. Coronary artery bypass graft flow: qualitative evaluation with cine single-detector row CT and comparison with findings at angiography. Radiology 2002;224:913–918.

    PubMed  Google Scholar 

  13. Rumberger JA, Feiring AJ, Hiratzka LF, et al. Quantification of coronary artery bypass flow reserve in dogs using cine-computed tomography. Circ Res 1987;61(5 Pt 2):II117–123.

    PubMed  CAS  Google Scholar 

  14. Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K. Noninvasive, three-dimensional visualization of coronary artery bypass grafts by electron beam tomography. Am J Cardiol 1997;79:856–861.

    Article  PubMed  CAS  Google Scholar 

  15. Ha JW, Cho SY, Shim WH, et al. Noninvasive evaluation of coronary artery bypass graft patency using three-dimensional angiography obtained with contrast-enhanced electron beam CT. AJR Am J Roentgenol 1999;172:1055–1059.

    PubMed  CAS  Google Scholar 

  16. Lu B, Dai RP, Jing BL, et al. Evaluation of coronary artery bypass graft patency using three-dimensional reconstruction and flow study on electron beam tomography. J Comput Assist Tomogr 2000;24:663–670.

    Article  PubMed  CAS  Google Scholar 

  17. Lu B, Dai RP, Zhuang N, Budoff MJ. Noninvasive assessment of coronary artery bypass graft patency and flow characteristics by electron-beam tomography. J Invasive Cardiol 2002;14:19–24.

    PubMed  Google Scholar 

  18. Yamakami S, Toyama J, Okamoto M, et al. Noninvasive detection of coronary artery bypass graft patency by intravenous electron beam computed tomographic angiography. Jpn Heart J 2003;44:811–822.

    Article  PubMed  Google Scholar 

  19. Ropers D, Ulzheimer S, Wenkel E, et al. Investigation of aortocoronary artery bypass grafts by multislice spiral computed tomography with electrocardiographic-gated image reconstruction. Am J Cardiol 2001;88:792–795.

    Article  PubMed  CAS  Google Scholar 

  20. Nieman K, Pattynama PMT, Rensing BJ, van Geuns RJM, de Feyter PJ. Evaluation of patients after coronary artery bypass surgery: CT angiographic assessment of grafts and coronary arteries. Radiology 2003;229:749–756.

    PubMed  Google Scholar 

  21. Schlosser T, Konorza T, Hunold P, Kuhl H, Schmermund A, Barkhausen J. Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. J Am Coll Cardiol 2004;44:1224–1229.

    Article  PubMed  Google Scholar 

  22. Dewey M, Lembcke A, Enzweiler C, Hamm B, Rogalla P. Isotropic half-millimeter angiography of coronary artery bypass grafts with 16-slice computed tomography. Ann Thorac Surg 2004;77:800–804.

    Article  PubMed  Google Scholar 

  23. Nieman K, Rensing BJ, van Geuns RJ, et al. Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart 2002;88:470–474.

    Article  PubMed  CAS  Google Scholar 

  24. Willmann JK, Weishaupt D, Kobza R, et al. Coronary artery bypass grafts: ECG-gated multi-detector row CT angiography — influence of image reconstruction interval on graft visibility. Radiology 2004;232:568–577.

    PubMed  Google Scholar 

  25. Berger A, MacCarthy PA, Siebert U, et al. Long-term patency of internal mammary artery bypass grafts. Relationship with preoperative severity of the native coronary artery stenosis. Circulation 2004;110(suppl II):II-36–II-40.

    Article  Google Scholar 

  26. Marano R, Storto ML, Maddestra N, Bonomo L. Non-invasive assessment of coronary artery bypass graft with retrospectively ECG-gated four-row multi-detector spiral computed tomography. Eur Radiol 2004;14:1353–1362.

    Article  PubMed  Google Scholar 

  27. Colombo A, Stankovic G, Moses JW. Selection of coronary stents. J Am Coll Cardiol 2002;40:1021–1033.

    Article  PubMed  Google Scholar 

  28. Lemos PA, Serruys PW, van Domburg RT, et al. Unrestricted utilization of sirolimus-eluting stents compared with conventional bare stent implantation in the “real world”: the Rapamycin-Eluting Stent Evaluated At Rotterdam Cardiology Hospital (RESEARCH) registry. Circulation 2004;109:190–195.

    Article  PubMed  CAS  Google Scholar 

  29. Schmermund A, Haude M, Baumgart D, et al. Non-invasive assessment of coronary Palmaz-Schatz stents with contrast enhanced electron beam computed tomography. Eur Heart J 1996;17:1546–1553.

    PubMed  CAS  Google Scholar 

  30. Möhlenkamp S, Pump H, Baumgart D, et al. Minimally invasive evaluation of coronary stents with electron beam computed tomography: In vivo and in vitro experience. Catheter Cardiovasc Interv 1999;48:39–47.

    Article  PubMed  Google Scholar 

  31. Pump H, Möhlenkamp S, Sehnert CA, et al. Coronary arterial stent patency: assessment with electron-beam CT. Radiology 2000;214:447–452.

    PubMed  CAS  Google Scholar 

  32. Knollmann FD, Möller J, Gebert A, Bethge C, Felix R. Assessment of coronary artery stent patency by electron-beam CT. Eur Radiol 2004;14:1341–1347.

    Article  PubMed  Google Scholar 

  33. Maintz D, Juergens KU, Wichter T, Grude M, Heindel W, Fischbach R. Imaging of coronary artery stents using multislice computed tomography: in vitro evaluation. Eur Radiol 2003;13:830–835.

    PubMed  Google Scholar 

  34. Maintz D, Seifarth H, Flohr T et al. Improved coronary artery stent visualization and in-stent stenosis detection using 16-slice computed-tomography and dedicated image reconstruction technique. Invest Radiol 2003;38:790–795.

    PubMed  Google Scholar 

  35. Nieman K, Cademartiri F, Raaijmakers R, Pattynama P, de Feyter P. Noninvasive angiographic evaluation of coronary stents with multislice spiral computed tomography. Herz 2003;28:136–142.

    Article  PubMed  Google Scholar 

  36. Mahnken AH, Buecker A, Wildberger JE, et al. Coronary artery stents in multislice computed tomography: in vitro artifact evaluation. Invest Radiol 2004;39:27–33.

    Article  PubMed  Google Scholar 

  37. Mahnken AH, Seyfarth T, Flohr T, et al. Flat-panel detector computed tomography for the assessment of coronary artery stents: phantom study in comparison with 16-slice spiral computed tomography. Invest Radiol 2005;40:8–13.

    PubMed  Google Scholar 

  38. Seifarth H, Raupach R, Schaller S, et al. Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 2005 [Epub ahead of print].

    Google Scholar 

  39. Hong C, Chrysant GS, Woodard PK, Bae KT. Coronary artery stent patency assessed with in-stent contrast enhancement measured at multi-detector row CT angiography: Initial experience. Radiology 2004;233:286–291.

    PubMed  Google Scholar 

  40. Krüger S, Mahnken AH, Sinha AM, et al. Multislice spiral computed tomography for the detection of coronary stent restenosis and patency. Int J Cardiol 2003;89:167–172.

    PubMed  Google Scholar 

  41. Nieman K, Ligthart JMR, Serruys PW, de Feyter PJ. Left main rapamycin-coated stent: invasive versus noninvasive angiographic follow-up. Circulation 2002;105:e130–e131.

    Article  PubMed  Google Scholar 

  42. Shaohong Z, Yongkang N, Zulong C, Hong Z, Li Y. Imaging of coronary stent by multislice helical computed tomography. Circulation 2002;106:637–638.

    Article  PubMed  Google Scholar 

  43. Funabashi N, Komiyama N, Yanagawa N, Mayama T, Yoshida K, Komuro I. Coronary artery patency after metallic stent implantation evaluated by multislice computed tomography. Circulation 2003;107:147–148.

    Article  PubMed  Google Scholar 

  44. Schuijf JD, Bax JJ, Jukema JW, et al. Coronary stent imaging with multidetector row computed tomography. Int J Cardiovasc Imaging 2004;20:341–344.

    Article  PubMed  Google Scholar 

  45. Mollet NR, Cademartiri F. In-stent neointimal hyperplasia with 16-row multislice computed tomography coronary angiography. Circulation 2004;110:e514.

    Article  PubMed  Google Scholar 

  46. Schuijf JD, Bax JJ, Jukema JW, et al. Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol 2004;94:427–430.

    Article  PubMed  Google Scholar 

  47. Gilard M, Cornily JC, Rioufol G, et al. Noninvasive assessment of left main coronary stent patency with 16-slice computed tomography. Am J Cardiol 2005;95:110–112.

    Article  PubMed  Google Scholar 

  48. Stanford W, Travis ME, Thompson BH, Reiners TJ, Hasson RR, Winniford MD. Electron-beam computed tomographic detection of coronary calcification in patients undergoing percutaneous transluminal coronary angioplasty: predictability of restenosis. A preliminary report. Am J Card Imaging 1995;9:257–260.

    PubMed  CAS  Google Scholar 

  49. Takahashi M, Takamoto T, Aizawa T, Shimada H. Severity of coronary artery calcification detected by electron beam computed tomography is related to the risk of restenosis after percutaneous transluminal coronary angioplasty. Intern Med 1997;36:255–262.

    PubMed  CAS  Google Scholar 

  50. Sinitsyn V, Belkind M, Matchin Y, Lyakishev A, Naumov V, Ternovoy S. Relationships between coronary calcification detected at electron beam computed tomography and percutaneous transluminal coronary angioplasty results in coronary artery disease patients. Eur Radiol 2003;13:62–67.

    Article  PubMed  CAS  Google Scholar 

  51. Mintz GS, Popma JJ, Pichard AD, et al. Intravascular ultrasound predictors of restenosis after percutaneous transcatheter coronary revascularization. J Am Coll Cardiol 1996;27:1678–1687.

    Article  PubMed  CAS  Google Scholar 

  52. Mollet NR, Hoye A, Lemos PA, et al. Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol 2005;95:240–243.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Schmermund, A., Möhlenkamp, S., Schlosser, T., Erbel, R. (2006). Coronary Angiography after Revascularization. In: Budoff, M.J., Shinbane, J.S., Achenbach, S., Raggi, P., Rumberger, J.A. (eds) Cardiac CT Imaging. Springer, London . https://doi.org/10.1007/1-84628-146-6_10

Download citation

  • DOI: https://doi.org/10.1007/1-84628-146-6_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-028-3

  • Online ISBN: 978-1-84628-146-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics