Skip to main content

Computed Tomography

  • Chapter
Cardiac CT Imaging

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mao S, Budoff MJ, Oudiz RJ, Bakhsheshi H, Wang S, Brundage BH. A simple single slice method for measurement of left and right ventricular enlargement by electron beam tomography. Int J Card Imaging 2000;16:383–390.

    Article  PubMed  CAS  Google Scholar 

  2. Budoff MJ, Mao SS, Wang S, Bakhsheshi H, Brundage BH. A Simple single slice method for measurement of left and right atrial volume by electron beam computed tomography. Acad Radiol 1999;6:481–486.

    Article  PubMed  CAS  Google Scholar 

  3. Stuber M, Botnar RM, Fischer SE, et al. Preliminary report of in-vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 2002;48:425–428.

    Article  PubMed  Google Scholar 

  4. Carr JJ, Nelson JC, Wong ND, et al. Calcified coronary artery plaque measurement with cardiac CT in population-based studies: standardized protocol of Multi-Ethnic Study of Atherosclerosis (MESA) and Coronary Artery Risk Development in Young Adults (CARDIA) study. Radiology 2005;234:35–43.

    PubMed  Google Scholar 

  5. Nieman K, Rensing BJ, van Geuns RJ, et al. Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart 200;88(5):470–474.

    Google Scholar 

  6. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenosis with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 2003;107:664–666.

    Article  PubMed  Google Scholar 

  7. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 2002;106:2051–2054.

    Article  PubMed  Google Scholar 

  8. Regenfus M, Ropers D, Achenbach S, et al. Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol 2000;36:44–50.

    Article  PubMed  CAS  Google Scholar 

  9. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001;345:1863–1869.

    Article  PubMed  CAS  Google Scholar 

  10. Blobel J, Baartman H, Rogalla P, Mews J, Lembcke A. Spatial and temporal resolution with 16-slice computed tomography for cardiac imaging. Fortschr Roentgenstr 2003;175:1264–1271.

    Article  CAS  Google Scholar 

  11. Lembcke A, Rogalla P, Mews J, et al. Imaging of the coronary arteries by means of multislice helical CT: optimization of image quality with multisegmental reconstruction and variable gantry rotation time. Fortschr Roentgenstr 2003;175:780–785.

    Article  CAS  Google Scholar 

  12. Wicky S, Rosol M, Hoffmann U, Graziano M, Yucel KE, Brady TJ. Comparative study with a moving heart phantom of the impact of temporal resolution on image quality with two multidetector electrocardiography-gated computed tomography units. J Comput Assist Tomogr 2003;27:392–398.

    Article  PubMed  Google Scholar 

  13. Dewey M, Laule M, Krug L et al. Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenosis. Invest Radiol 2004;39:223–229.

    Article  PubMed  Google Scholar 

  14. Mao S, Lu B, Oudiz RJ, Bakhsheshi H, Liu SCK, Budoff MJ. Coronary artery motion in electron beam tomography. J Comput Assist Tomogr 2000;24:253–258.

    Article  PubMed  CAS  Google Scholar 

  15. Baik HK, Budoff MJ, Lane KL, Bakhsheshi H, Brundage BH. Accurate measures of ejection fraction using electron beam tomography, radionuclide angiography, and catheterization angiography. Int J Card Imaging 2000;16:391–398.

    Article  PubMed  CAS  Google Scholar 

  16. Mao SS, Budoff MJ, Oudiz RJ, et al. Effect of exercise on left and right ventricular ejection fraction and wall motion in patients with coronary artery disease: an electron beam computed tomography study. Int J Cardiol 1999:71;23–31.

    Article  PubMed  CAS  Google Scholar 

  17. McKay CR, Brundage BH, Ullyot DJ, et al. Evaluation of early postoperative coronary artery bypass grafts patency by contrast-enhanced computed tomography. J Am Coll Cardiol 1983;2:312–317.

    PubMed  CAS  Google Scholar 

  18. Nissen SE, Gurley GL. Assessment of coronary angioplasty results by intravascular ultrasound. In: Serruys PW, Straus BH, King SB III (eds) Restenosis after intervention with new mechanical devices. Dordrecht, Netherlands: Kluwer, 1992:73–96.

    Google Scholar 

  19. Ritchie CJ, Godwin, JD. Minimum scan speeds for suppression of motion artifacts in CT. Radiology 1992;185:37–42.

    PubMed  CAS  Google Scholar 

  20. Wang Y, Vidan E. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 1999;213(3):751–758.

    PubMed  CAS  Google Scholar 

  21. Hofman MB, Wickline SA. Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 1998;8(3):568–576.

    PubMed  CAS  Google Scholar 

  22. Marcus JT, Smeenk HG. Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: effects of through-plane and in-plane motion of the heart. J Comput Assist Tomogr 1999;23(4):567–576.

    Article  PubMed  CAS  Google Scholar 

  23. Morin RL, Gerber TC, McCollough CH. Radiation dose in computed tomography of the heart. Circulation 2003;107:917–922.

    Article  PubMed  Google Scholar 

  24. Hunold P, Vogt FM, Schmermund A, et al. Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 2003;226:145–152.

    PubMed  Google Scholar 

  25. International Commission on Radiological Protection. Recommendation of the ICRP. ICRP Publication 60. Oxford: Pergamon Press, 1990.

    Google Scholar 

  26. Knollmann FD, Hidajat N, Felix R. CTA of the coronary arteries: comparison of radiation exposure with EBCT and multi-slice detector CT. Radiology 2000;217(P):364.

    Google Scholar 

  27. Flohr TG, Schoepf UJ, Kuettner A, et al. Advances in cardiac imaging with 16-section CT systems. Acad Radiol 2003;10(4):386–401.

    Article  PubMed  Google Scholar 

  28. Jakobs TF, Becker CR, Ohnesorge B, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 2002;12:1081–1086.

    Article  PubMed  Google Scholar 

  29. Trabold T, Buchgeister M, Kuttner A, et al. Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Rofo 2003;175:1051–1055.

    PubMed  CAS  Google Scholar 

  30. Leta R, Carreras F, Alomar X, et al. Non-invasive coronary angiography with 16 multidetector-row spiral computed tomography: a comparative study with invasive coronary angiography. Rev Esp Cardiol 2004;57:217–224.

    Article  PubMed  Google Scholar 

  31. Janowitz WR, Agatston AS, Viamonte M. Comparison of serial quantitative evaluation of calcified coronary artery plaque by ultrafast computed tomography in persons with and without obstructive coronary artery disease. Am J Cardiol 1991;68:1–6.

    Article  PubMed  CAS  Google Scholar 

  32. Blankenhorn DH. Coronary artery calcification: a review. Am J Med Sci 1961;242:1–9.

    Google Scholar 

  33. Breen JF, Sheedy PF, Schwartz RS, et al. Coronary artery calcification detected with ultrafast CT as an indication of coronary artery disease. Radiology 1992;185:435–439.

    PubMed  CAS  Google Scholar 

  34. Lipton MJ, Higgins CB, Boyd DP. Computed tomography of the heart: evaluation of anatomy and function. J Am Coll Cardiol 1985;5:555–595.

    Google Scholar 

  35. Roig E, Chomka EV, Castaner A, et al. Exercise ultrafast computed tomography for the detection of coronary artery disease. J Am Coll Cardiol 1989;13:1073–1081.

    Article  PubMed  CAS  Google Scholar 

  36. Marcus ML, Armstrong MD, Heistad DD, Eastham CL, Mark AL. Comparison of three methods of evaluating coronary obstructive lesions: postmortem arteriography, pathologic examination and measurement of regional myocardial perfusion during maximal vasodilation. Am J Cardiol 1982;49:1688–1706.

    Article  Google Scholar 

  37. Grondin CM, Dyrda I, Pasternac A, Campeau L, Bourassa MG, Lesperance J. Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation 1974;49:703–708.

    PubMed  CAS  Google Scholar 

  38. Thomas AC, Daview MJ, Dilly S, Dilly N, Franc F. Potential errors in estimation of coronary arterial stenoses from clinical coronary arteriography with reference to the shape of the coronary arterial lumen. Br Heart J 1986;55:129–139.

    PubMed  CAS  Google Scholar 

  39. Mintz GS, Painter JA, Pichard AD, et al. Atherosclerosis in angiographically normal coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 1995;25:1479–1485.

    Article  PubMed  CAS  Google Scholar 

  40. Van den Broek JGM, Slump CH, Storm CJ, Van Benthem AC, Buis B. Three-dimensional densitometric reconstruction and visualization of stenosed coronary artery segments. Comput Med Imaging Graph 1995;19:207–217.

    Article  PubMed  Google Scholar 

  41. Napel S, Rubin GD, Jeffrey RB Jr. STS-MIP: A new reconstruction technique for CT of the chest. J Comput Assist Tomogr 1993;17(5):832–838.

    PubMed  CAS  Google Scholar 

  42. Thomas PJ, McCollough CH, Ritman EL: An electron-beam CT approach for transvenous coronary angiography. J Comput Assist Tomogr 1995;19(3):383–389.

    PubMed  CAS  Google Scholar 

  43. Achenbach S. Contrast enhanced electron beam tomography for the non-invasive 3-dimensional visualization of coronary arteries and detection of stenoses. Am J Card Imaging 1995;9(Suppl 1):A30.

    Google Scholar 

  44. Chernoff DM, Ritchie CJ, Higgins CB. Evaluation of electron beam CT coronary angiography in healthy subjects. AJR Am J Roentgenol 1997;169:93–99.

    PubMed  CAS  Google Scholar 

  45. Schroeder S, Kopp AF, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001;37:1430–1435.

    Article  PubMed  CAS  Google Scholar 

  46. Leber AW, Knez A, White CW, et al. Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. Am J Cardiol 2003;91:714–718.

    Article  PubMed  Google Scholar 

  47. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance imaging with conventional angiography. N Engl J Med 1993;328:828–832.

    Article  PubMed  CAS  Google Scholar 

  48. Pennell DJ, Keegan J, Firmin DN, Gatehouse PD, Underwood SR, Longmore DB. Magnetic resonance imaging of coronary arteries: technique and preliminary results. Br Heart J 1993;70:315–326.

    PubMed  CAS  Google Scholar 

  49. Paschal CB, Haache EM, Adler LP. Coronary arteries: three-dimensional MR imaging of the coronary arteries: preliminary clinical experience. J Magn Reson Imaging 1993;3:491–501.

    PubMed  CAS  Google Scholar 

  50. Duerinckx AJ, Urman MK. Two dimensional coronary MR angiography: analysis of initial clinical results. Radiology 1994;193:731–738.

    PubMed  CAS  Google Scholar 

  51. Duerinckx AJ, Urman MK, Atkinson DJ, Simonetti OP, Sinha U, Lewis B. Limitations of MR coronary angiography. J Magn Reson Imaging 1994;4:81.

    Google Scholar 

  52. Duerinckx AJ, Atkinson DP, Mintorovitch J, Simonetti OP, Urman MK. Two-dimensional coronary MRA: limitations and artifacts. Eur Radiol 1996;6:312–325.

    Article  PubMed  CAS  Google Scholar 

  53. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001;345:1863–1869.

    Article  PubMed  CAS  Google Scholar 

  54. Chernoff DM, Ritchie CJ, Higgins CB. Evaluation of electron beam CT coronary angiography in healthy subjects. AJR Am J Roentgenol 1997;169:93–99.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Budoff, M.J. (2006). Computed Tomography. In: Budoff, M.J., Shinbane, J.S., Achenbach, S., Raggi, P., Rumberger, J.A. (eds) Cardiac CT Imaging. Springer, London . https://doi.org/10.1007/1-84628-146-6_1

Download citation

  • DOI: https://doi.org/10.1007/1-84628-146-6_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-028-3

  • Online ISBN: 978-1-84628-146-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics