Skip to main content

Modeling Genetic Regulatory Networks using Gene Expression Profiling and State-Space Models

  • Chapter
Probabilistic Modeling in Bioinformatics and Medical Informatics

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Summary

We describe a Bayesian network approach to infer genetic regulatory interactions from microarray gene expression data. This problem was introduced in Chapter 7 and an alternative Bayesian network approach was presented in Chapter 8. Our approach is based on a linear dynamical system, which renders the inference problem tractable: the E-step of the EM algorithm draws on the well-established Kalman smoothing algorithm. While the intrinsic linearity constraint makes our approach less suitable for modeling non-linear genetic interactions than the approach of Chapter 8, it has two important advantages over the method of Chapter 8. First, our approach works with continuous expression levels, which avoids the information loss inherent in a discretization of these signals. Second, we include hidden states to allow for the effects that cannot be measured in a microarray experiment, for example: the effects of genes that have not been included on the microarray, levels of regulatory proteins, and the effects of mRNA and protein degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Akutsu, S. Miyano, and S. Kuhara. Identification of genetic networks from a small number of gene expression patterns under the boolean network model. Pac. Symp. Biocomput., pages 17–28, 1999.

    Google Scholar 

  2. M. Aoki. State Space Modeling of Time Series. Springer-Verlag, New York, 1987.

    Google Scholar 

  3. A. Arkin, P. Shen, and J. Ross. A test case of correlation metric construction of a reaction pathway from measurements. Science, 277:1275–1279, 1997.

    Article  Google Scholar 

  4. P. Brockwell and R. Davis. Time Series: Theory and Methods. Springer-Verlag, New York, 1996.

    Google Scholar 

  5. R. G. Brown and P. Y. Hwang. Introduction to Random Signals and Applied Kalman Filtering. John Wiley and Sons, New York, 1997.

    Google Scholar 

  6. G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309–347, 1992.

    Google Scholar 

  7. T. G. Dewey and D. J. Galas. Generalized dynamical models of gene expression and gene classification. Funt. Int. Genomics, 1:269–278, 2000.

    Article  Google Scholar 

  8. P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of mRNA expression levels during CNS development and injury. Pacific Symposium for Biocomputing, 3:41–52, 1999.

    Google Scholar 

  9. J. Dopazo, E. Zanders, I. Dragoni, G. Amphlett, and F. Falciani. Methods and approaches in the analysis of gene expression data. Journal of Immunological Methods, 250:93–112, 2001.

    Article  Google Scholar 

  10. N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression data. J. Comput. Biol., 7:601–620, 2000.

    Article  Google Scholar 

  11. Z. Ghahramani and M. Beal. Variational inference for Bayesian mixture of factor analysers. Advances in Neural Information Processing Systems, 12:449–455, 2000.

    Google Scholar 

  12. Z. Ghahramani and M. Beal. Propagation algorithms for variational Bayesian learning. Advances in Neural Information processing Systems, 13, 2001.

    Google Scholar 

  13. E. Hannan and M. Deistler. The Statistical Theory of Linear Systems. John Wiley, New York, 1988.

    Google Scholar 

  14. B. Kholodenko, A. Kiyatkin, F. Bruggeman, E. Sontag, H. Westerhoff, and J. Hoek. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl. Acad. Sci., 99:12841–12846, 2002.

    Article  Google Scholar 

  15. S. Liang, S. Fuhrman, and R. Somogyi. Identification of genetic networks from a small number of gene expression patterns under the boolean network model. Pac. Symp. Biocomput., pages 18–29, 1998.

    Google Scholar 

  16. L. Ljung. System Identifiability, 2nd ed. Prentice Hall, New Jersey, 1999.

    Google Scholar 

  17. R. J. Meinhold and N. D. Singpurwalla. Understanding the Kalman Filter. The American Statistician, 37(2):123–127, 1983.

    Article  MathSciNet  Google Scholar 

  18. K. Murphy and S. Mian. Modelling gene expression data using dynamic Bayesian networks. Proc. Intelligent Systems for Molecular Biology, August 1999.

    Google Scholar 

  19. I. Ong, J. Glasner, and D. Page. Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics, 18(1):S241–S248, 2002.

    Google Scholar 

  20. D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from perturbed expression profiles. Proc. 9th International Conference on Intelligent Systems for Molecular Biology (ISMB), 2001.

    Google Scholar 

  21. C. Rangel, J. Angus, Z. Ghahramani, M. Lioumi, E.A. Sotheran, A. Gaiba, D. L. Wild, and F. Falciani. Modeling T-cell activation using gene expression profiling and state space models. Bioinformatics, 20(9): 1316–1372, 2004.

    Article  Google Scholar 

  22. C. Rangel, D. L. Wild, F. Falciani, Z. Ghahramani, and A. Gaiba. Modelling biological responses using gene expression profiling and linear dynamical systems. In Proceedings of the 2nd International Conference on Systems Biology, pages 248–256. Omipress, Madison, WI, 2001.

    Google Scholar 

  23. S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Computation, 11:305–345, 1999.

    Article  Google Scholar 

  24. V. Smith, E. Jarvis, and A. Hartemink. Evaluating functional network influence using simulations of complex biological systems. Bioinformatics, 18(1):S216–S224, 2002.

    Google Scholar 

  25. P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen, P. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell., 9:3273–3297, 1998.

    Google Scholar 

  26. R. Thomas. Boolean formalization of genetic control circuits. J. Theor. Biol., 42(3):563–586, 1973.

    Article  Google Scholar 

  27. E. van Someren, L.F. Wessels, E. Backer, and M. Reinders. Genetic network modeling. Pharmacogenomics, 3:507–525, 2002.

    Article  Google Scholar 

  28. E. van Someren, L.F. Wessels, and M. Reinders. Linear modeling of genetic networks from experimental data. Proc. 9th International Conference on Intelligent Systems for Molecular Biology (ISMB), 8:355–366, 2000.

    Google Scholar 

  29. D. Weaver, C. Workman, and G. Stormo. Modeling regulatory networks with weight matrices. Pacific Symposium for Biocomputing, 4:112–123, 1999.

    Google Scholar 

  30. L. Wessels, E. van Someren, and M. Reinders. A comparison of genetic network models. Pacific Symposium for Biocomputing, 6:508–519, 2001.

    Google Scholar 

  31. M. Yeung, J. Tegner, and J. Collins. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci., 99:6163–6168, 2002.

    Article  Google Scholar 

  32. C. Yoo, V. Thorsson, and G. Cooper. Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data. Pac. Symp. Biocomput., pages 422–433, 2002.

    Google Scholar 

  33. D. Zak, F. Doyle, G. Gonye, and J. Schwaber. Simulation studies for the identification of genetic networks from cDNA array and regulatory activity data. In Proceedings of the 2nd International Conference on Systems Biology, pages 231–238. Omipress, Madison, WI, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rangel, C., Angus, J., Ghahramani, Z., Wild, D.L. (2005). Modeling Genetic Regulatory Networks using Gene Expression Profiling and State-Space Models. In: Husmeier, D., Dybowski, R., Roberts, S. (eds) Probabilistic Modeling in Bioinformatics and Medical Informatics. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-119-9_9

Download citation

  • DOI: https://doi.org/10.1007/1-84628-119-9_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-778-0

  • Online ISBN: 978-1-84628-119-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics