Skip to main content

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Summary

Bayesian networks are a combination of probability theory and graph theory. Graph theory provides a framework to represent complex structures of highly-interacting sets of variables. Probability theory provides a method to infer these structures from observations or measurements in the presence of noise and uncertainty. Many problems in computational molecular biology and bioinformatics, like sequence alignment, molecular evolution, and genetic networks, can be treated as particular instances of the general problem of learning Bayesian networks from data. This chapter provides a brief introduction, in preparation for later chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Baldi and P. Brunak. Bioinformatics — The Machine Learning Approach. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  2. R. Balian. From Microphysics to Macrophysics. Methods and Applications of Statistical Physics., volume 1. Springer-Verlag, 1982.

    Google Scholar 

  3. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, New York, 1995. ISBN 0-19-853864-2.

    Google Scholar 

  4. S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm. The American Statistician, 49(4):327–335, 1995.

    Article  Google Scholar 

  5. D. M. Chickering. A transformational characterization of equivalent Bayesian network structures. International Conference on Uncertainty in Artificial Intelligence (UAI), 11:87–98, 1995.

    MathSciNet  Google Scholar 

  6. D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H. J. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics, volume 5, pages 121–130, New York, 1996. Springer.

    Google Scholar 

  7. A. P. Dawid. Applications of general propagation algorithm for probabilistic expert systems. Statistics and Computing, 2:25–36, 1992.

    Article  Google Scholar 

  8. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B39(1):1–38, 1977.

    MathSciNet  Google Scholar 

  9. R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis. Probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge, UK, 1998.

    Google Scholar 

  10. N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In D. H. Fisher, editor, Proceedings of the Fourteenth International Conference on Machine Learning (ICML), pages 125–133, Nashville, TN, 1997. Morgan Kaufmann.

    Google Scholar 

  11. N. Friedman. The Bayesian structural EM algorithm. In G. F. Cooper and S. Moral, editors, Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI), pages 129–138, Madison, WI, 1998. Morgan Kaufmann.

    Google Scholar 

  12. N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network structure from massive datasets: The “sparse candidate” algorithm. In Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence, pages 196–205, San Francisco, CA, 1999. Morgan Kaufmann Publishers.

    Google Scholar 

  13. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Introducing Markov chain Monte Carlo. In W. R. Gilks, S. Richardson, and D. J. Spieglehalter, editors, Markov Chain Monte Carlo in Practice, pages 1–19, Suffolk, 1996. Chapman & Hall. ISBN 0-412-05551-1.

    Google Scholar 

  14. P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711–732, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97–109, 1970.

    Article  MATH  Google Scholar 

  16. D. Heckerman. A tutorial on learning with Bayesian networks. In M. I. Jordan, editor, Learning in Graphical Models, Adaptive Computation and Machine Learning, pages 301–354, The Netherlands, 1998. Kluwer Academic Publishers.

    Google Scholar 

  17. D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:245–274, 1995.

    Google Scholar 

  18. D. Husmeier. Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions. Perspectives in Neural Computing. Springer, London, 1999. ISBN 1-85233-095-3.

    Google Scholar 

  19. D. Husmeier. The Bayesian evidence scheme for regularising probability-density estimating neural networks. Neural Computation, 12(11):2685–2717, 2000.

    Article  Google Scholar 

  20. T. S. Jaakola and M. I. Jordan. Improving the mean field approximation via the use of mixture distributions. In M. I. Jordan, editor, Learning in Graphical Models, Adaptive Computation and Machine Learning, pages 163–173, The Netherlands, 1998. Kluwer Academic Publishers.

    Google Scholar 

  21. M. I. Jordan, Z. Ghahramani, T. S. Jaakola, and L. K. Saul. An introduction to variational methods for graphical models. In M. I. Jordan, editor, Learning in Graphical Models, pages 105–161, The Netherlands, 1998. Kluwer Academic Publishers.

    Google Scholar 

  22. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983.

    MathSciNet  Google Scholar 

  23. P. J. Krause. Learning probabilistic networks. Knowledge Engineering Review, 13:321–351, 1998.

    Article  Google Scholar 

  24. S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H. G. Leimer. Independence properties of directed Markov fields. Networks, 20:491–505, 1990.

    MathSciNet  Google Scholar 

  25. S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical structures and their applications to expert systems. Journal of the Royal Statistical Society, Series B, 50:157–224, 1988.

    MathSciNet  Google Scholar 

  26. D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4:415–447, 1992.

    Google Scholar 

  27. D. J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation, 4:448–472, 1992.

    Google Scholar 

  28. D. J. C. MacKay. Introduction to Monte Carlo methods. In M. I. Jordan, editor, Learning in Graphical Models, pages 301–354, The Netherlands, 1998. Kluwer Academic Publishers.

    Google Scholar 

  29. D. Madigan and J. York. Bayesian graphical models for discrete data. International Statistical Review, 63:215–232, 1995.

    Google Scholar 

  30. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.

    Article  Google Scholar 

  31. K. P. Murphy. An introduction to graphical models. Technical report, MIT Artificial Intelligence Laboratory, 2001. http://www.ai.mit.edu/~murphyk/Papers/intro_gm.pdf.

    Google Scholar 

  32. K. P. Murphy. Bayes net toolbox. Technical report, MIT Artificial Intelligence Laboratory, 2002. http://www.ai.mit.edu/~murphyk/.

    Google Scholar 

  33. R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355–368, The Netherlands, 1998. Kluwer Academic Publishers.

    Google Scholar 

  34. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco, CA, 1988.

    Google Scholar 

  35. C. Petersen and J. R. Anderson. A mean field theory learning algorithm for neural networks. Complex Systems, 1:995–1019, 1987.

    Google Scholar 

  36. L. Rabiner. A tutorial on hiddenMarkov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

    Article  Google Scholar 

  37. J. J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.

    Article  MATH  Google Scholar 

  38. G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

    MATH  MathSciNet  Google Scholar 

  39. H. Sies. A new parameter for sex-education. Nature, 332:495, 1988.

    Article  Google Scholar 

  40. P. Spirtes, C. Meek, and T. Richardson. An algorithm for causal inference in the presence of latent variables and selection bias. In G. Cooper and C. Glymour, editors, Computation, Causation, and Discovery, pages 211–252. MIT Press, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Husmeier, D. (2005). Introduction to Learning Bayesian Networks from Data. In: Husmeier, D., Dybowski, R., Roberts, S. (eds) Probabilistic Modeling in Bioinformatics and Medical Informatics. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-119-9_2

Download citation

  • DOI: https://doi.org/10.1007/1-84628-119-9_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-778-0

  • Online ISBN: 978-1-84628-119-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics