Skip to main content

Bayes Consistent Classification of EEG Data by Approximate Marginalization

  • Chapter
Probabilistic Modeling in Bioinformatics and Medical Informatics

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

  • 2018 Accesses

Summary

This chapter proposes a generative model and a Bayesian learning scheme for a classifier that takes uncertainty at all levels of inference into account. Classifier inputs will be uncertain if they are estimated, for example using a preprocessing method. Classical approaches would neglect the uncertainties associated with these variables. However, the decisions thus found are not consistent with Bayesian theory. In order to conform with the axioms underlying the Bayesian framework, we must incorporate all uncertainties into the decisions. The model we use for classification treats input variables resulting from preprocessing as latent variables. The proposed algorithms for learning and prediction fuse information from different sensors spatially and across time according to its certainty. In order to get a computationally tractable method, both feature and model uncertainty of the preprocessing stage are obtained in closed form. Classification requires integration over this latent feature space, which in this chapter is done approximately by a Markov chain Monte Carlo (MCMC) method. Our approach is applied to classifying cognitive states from EEG segments and to classification of sleep spindles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. E. P. Box and G. M. Jenkins. Time Series Analysis, Forecasting and Control. Holden-Day, Oakland, CA, 1976.

    Google Scholar 

  2. G. L. Bretthorst. Bayesian analysis I: Parameter estimation using quadratur NMR models. Journal of Magnetic Resonance, 88:533–551, 1990.

    Google Scholar 

  3. J. J. K. Ó Ruanaidh and W. J. Fitzgerald. Numerical Bayesian Methods Applied to Signal Processing. Springer-Verlag, New York, 1995.

    Google Scholar 

  4. D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4:415–447, 1992.

    Google Scholar 

  5. D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4:720–736, 1992.

    Google Scholar 

  6. R. M. Neal. Bayesian Learning for Neural Networks. Springer, New York, 1996.

    Google Scholar 

  7. L. Ljung. System Identification, Theory for the User. Prentice-Hall, Englewood Cliffs, NJ, 1999.

    Google Scholar 

  8. W. A. Wright. Bayesian approach to neural-network modelling with input uncertainty. IEEE Trans. Neural Networks, 10:1261–1270, 1999.

    Article  Google Scholar 

  9. P. Dellaportas and S. A. Stephens. Bayesian analysis of errors-in-variables regression models. Biometrics, 51:1085–1095, 1995.

    Google Scholar 

  10. H. Jeffreys. Theory of Probability. Clarendon Press, Oxford, 3rd edition, 1961.

    Google Scholar 

  11. P. Sykacek and S. Roberts. Bayesian time series classification. In T. G. Dietterich, S. Becker, and Z. Gharamani, editors, Advances in Neural Processing Systems 14, pages 937–944. MIT Press, 2002.

    Google Scholar 

  12. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York, 1965.

    Google Scholar 

  13. S. Brunak and P. Baldi. Bioinformatics. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  14. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society series B, 39:1–38, 1977.

    MathSciNet  Google Scholar 

  15. L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41:164–171, 1970.

    MathSciNet  Google Scholar 

  16. S. Richardson and P. J. Green. On Bayesian analysis of mixtures with an unknown number of components. Journal Royal Stat. Soc. B, 59:731–792, 1997.

    Article  MathSciNet  Google Scholar 

  17. J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley, Chichester, 1994.

    Google Scholar 

  18. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (ed.). Markov Chain Monte Carlo in Practice. Chapman & Hall, London, 1996.

    Google Scholar 

  19. C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer, New York, 1999.

    Google Scholar 

  20. A. Gelman and D. B. Rubin. Inference from iterative simulations using multiple sequences (with discussion). Statist. Sci., 7:457–511, 1992.

    Google Scholar 

  21. A. E. Raftery and S. M. Lewis. Implementing MCMC. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, pages 115–130. Chapman & Hall, London, 1996.

    Google Scholar 

  22. H. H. Jasper. Report of the committee on methods of clinical examination in electroencephalography. Clinical Neurophysiology, 10:370–1, 1958.

    Article  Google Scholar 

  23. H. H. Jasper. Appendix to report of the committee on methods of clinical examination in EEG: the ten-twenty electrode system of the International Federation of Electroencephalography. Clinical Neurophysiology, 10:371–375, 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sykacek, P., Rezek, I., Roberts, S. (2005). Bayes Consistent Classification of EEG Data by Approximate Marginalization. In: Husmeier, D., Dybowski, R., Roberts, S. (eds) Probabilistic Modeling in Bioinformatics and Medical Informatics. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-119-9_13

Download citation

  • DOI: https://doi.org/10.1007/1-84628-119-9_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-778-0

  • Online ISBN: 978-1-84628-119-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics