Advertisement

A Triple Inverted Pendulum Control-system Design

Chapter
  • 3.7k Downloads
Part of the Advanced Textbooks in Control and Signal Processing book series (C&SP)

Keywords

Transient Response Robust Stability Inverted Pendulum Robust Performance Disturbance Rejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. 28.
    K.G. Eltohamy. Nonlinear optimal control of a triple inverted pendulum with single control input. International Journal of Control, 69:239–256, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 40.
    K. Furuta, K. Kajiwara, and K. Kosuge. Digital control of a double inverted pendulum on an inclined rail. International Journal of Control, 32:907–924, 1980.Google Scholar
  3. 41.
    K. Furuta, T. Ochia, and N. Ono. Attitude control of a triple inverted pendulum. International Journal of Control, 39:1351–1365, 1984.Google Scholar
  4. 72.
    H. Kajiwara, P. Apkarian, and P. Gahinet. LPV techniques for control of an inverted pendulum. IEEE Control Systems Magazine, 19:44–54, 1999.CrossRefGoogle Scholar
  5. 80.
    P.J. Larcombe. On the generation and solution of the symbolic, open-loop charactersitic equation for a double inverted pendulum. International Journal of Systems Science, 24:2379–2390, 1993.zbMATHMathSciNetGoogle Scholar
  6. 102.
    G.A. Medrano-Cerda. Robust stabilization of a triple inverted pendulum-cart. International Journal of Control, 68:849–865, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 103.
    G.A. Medrano-Cerda. Robust computer control of an inverted pendulum. IEEE Control Systems Magazine, 19:58–67, 1999.CrossRefGoogle Scholar
  8. 104.
    Z. Meier, H. Farwig, and H. Unbehauen. Discrete computer control of a triple-inverted pendulum. Optimal Control Applications & Methods, 11:157–171, 1990.MathSciNetGoogle Scholar
  9. 110.
    S. Mori, H. Nishihara, and K. Furuta. Control of an unstable mechanical system. Control of pendulum. International Journal of Control, 23:673–692, 1976.Google Scholar
  10. 149.
    V.A. Tsacouridis and G.A. Medrano-Cerda. Discrete-time control of a triple inverted pendulum with single control input. IEE Proceedings-Control Theory Appl., 146:567–577, 1999.CrossRefGoogle Scholar
  11. 150.
    G.-W. van der Linden and P.F. Lambrechts. control of an experimental inverted pendulum with dry friction. IEEE Control Systems Magazine, 19:44–50, 1993.CrossRefGoogle Scholar
  12. 165.
    W.N. White and R.C. Fales. Control of a double inverted pendulum with hydraulic actuation: A case study. In Proceedings of the 1999 American Control Conference, pages 495–499, San Diego, CA, June 1999.Google Scholar
  13. 166.
    M. Yamakita, T. Hoshino, and K. Furuta. Control practice using pendulum. In Proceedings of the 1999 American Control Conference, pages 490–494, San Diego, CA, June 1999.Google Scholar

Copyright information

© Springer-Verlag London Limited 2005

Personalised recommendations