Time-Frequency Analysis in Terahertz-Pulsed Imaging

  • Elizabeth Berry
  • Roger D Boyle
  • Anthony J Fitzgerald
  • James W Handley
Part of the Advances in Pattern Recognition book series (ACVPR)


Recent advances in laser and electro-optical technologies have made the previously underutilized terahertz frequency band of the electromagnetic spectrum accessible for practical imaging. Applications are emerging, notably in the biomedical domain. In this chapter the technique of terahertz-pulsed imaging is introduced in some detail. The need for special computer vision methods, which arises from the use of pulses of radiation and the acquisition of a time series at each pixel, is described. The nature of the data is a challenge since we are interested not only in the frequency composition of the pulses, but also how these differ for different parts of the pulse. Conventional and short-time Fourier transforms and wavelets were used in preliminary experiments on the analysis of terahertz-pulsed imaging data. Measurements of refractive index and absorption coefficient were compared, wavelet compression assessed, and image classification by multi dimensional clustering techniques demonstrated. It is shown that the time-frequency methods perform as well as conventional analysis for determining material properties. Wavelet compression gave results that were robust through compressions that used only 20% of the wavelet coefficients. It is concluded that the time-frequency methods hold great promise for optimizing the extraction of the spectroscopic information contained in each terahertz pulse, for the analysis of more complex signals comprising multiple pulses or from recently introduced acquisition techniques.


Terahertz Radiation Free Electron Laser Terahertz Pulse Wavelet Compression Step Wedge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Allen, S.J., Craig, K., Galdrikian, B., Heyman, J.N., Kaminski, J.P., Scott, J.S.: Materials science in the far-IR with electrostatic based FELs. Nuclear Instruments & Methods in Physics Research Section A; Accelerators Spectrometers Detectors and Associated Equipment 35 (1995) 536–539Google Scholar
  2. [2]
    Jaroszynski, D.A., Ersfeld, B., Giraud, G., Jamison, S., Jones, D.R., Issac, R.C.: The Strathclyde terahertz to optical pulse source (TOPS). Nuclear Instruments & Methods in Physics Research, Section A: Accelerators Spectrometers Detectors and Associated Equipment 445 (2000) 317–31Google Scholar
  3. [3]
    Grischkowsky, D.R., Mittleman, D.M.: Introduction. In Mittleman, D., ed.: Sensing with Terahertz Radiation. Springer-Verlag, Berlin (2003) 1–38Google Scholar
  4. [4]
    Auston, D.H., Nuss, M.C.: Electrooptic generation and detection of femtosecond electrical transients. IEEE Journal of Quantum Electronics 24 (1988) 184–197CrossRefGoogle Scholar
  5. [5]
    Kleine-Ostmann, T., Knobloch, P., Koch, M., Hoffmann, S., Breede, M., Hofmann, M.: Continuous-wave THz imaging. Electronics Letters 37 (2001) 1461–146CrossRefGoogle Scholar
  6. [6]
    Siebert, K.J., Quast, H., Leonhardt, R., Loeffler, T., Thomson, M., Bauer, T.: Continuous-wave all-optoelectronic terahertz imaging. Applied Physics Letters 80 (2002) 3003–3005CrossRefGoogle Scholar
  7. [7]
    Gallerano, G.P., Doria, A., Giovenale, E., Renieri, A.: Compact free electron lasers: From Cerenkov to waveguide free electron lasers. Infrared Physics & Technology 40 (1999) 161–174CrossRefGoogle Scholar
  8. [8]
    Grischkowsky, D., Keiding, S., van Exter, M., Fattinger, C.: Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America, B: Optical Physics 7 (1990) 2006–201Google Scholar
  9. [9]
    van Exter, M., Grischkowsky, D.R.: Carrier dynamics of electrons and holes in moderately doped silicon. Phys. Rev. B 41 (1990) 12140–12149Google Scholar
  10. [10]
    Kindt, J.T., Schmuttenmaer, C.A.: Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz-pulse spectroscopy. Journal of Physical Chemistry 100 (1996) 10373–10379CrossRefGoogle Scholar
  11. [11]
    Hu, B.B., Nuss, M.C.: Imaging with terahertz waves. Optics Letters 20 (1995) 1716–171Google Scholar
  12. [12]
    Wu, Q., Hewitt, T.D., Zhang, X.C.: Two-dimensional electro-optic imaging of THz beams. App. Phy. Lett. 69 (1996) 1026–1028Google Scholar
  13. [13]
    Herrmann, M., Tani, M., Sakai, K.: Display modes in time-resolved terahertz imaging. Japanese Journal of Applied Physics, Part 1: Regular Papers, Short Notes & Review Papers 39 (2000) 6254–625Google Scholar
  14. [14]
    Loeffler, T., Bauer, T., Siebert, K.J., Roskos, H.G., Fitzgerald, A., Czasch, S.: Terahertz darkfield imaging of biomedical tissue. Optics Express 9 (2001) 616–62Google Scholar
  15. [15]
    Ruffin, A.B., Van Rudd, J., Decker, J., Sanchez-Palencia, L., Le Hors, L., Whitaker, J.: Time reversal terahertz imaging. IEEE Journal of Quantum Electronics 38 (2002) 1110–111CrossRefGoogle Scholar
  16. [16]
    Mittleman, D.M., Hunsche, S., Boivin, L., Nuss, M.C.: T-ray tomography. Optics Letters 22 (1997) 904–90Google Scholar
  17. [17]
    Dorney, T.D., Symes, W.W., Baraniuk, R.G., Mittleman, D.M.: Terahertz multistatic reflection imaging. Journal of the Optical Society of America, A: Optics Image Science and Vision 19 (2002) 1432–144Google Scholar
  18. [18]
    Ferguson, B., Wang, S.H., Gray, D., Abbot, D., Zhang, X.C.: T-ray computed tomography. Optics Letters 27 (2002) 1312–131Google Scholar
  19. [19]
    Berry, E., Fitzgerald, A.J., Zinovev, N.N., Walker, G.C., Homer-Vanniasinkam, S., Sudworth, C.D.: Optical properties of tissue measured using terahertz-pulsed imaging. Proceedings of SPIE: Medical Imaging 5030 (2003)Google Scholar
  20. [20]
    Loeffler, T., Siebert, K.J., Czasch, S., Bauer, T., Roskos, H.G.: Visualization and classification in biomedical terahertz-pulsed imaging. Physics in Medicine and Biology 47 (2002) 3847–3852Google Scholar
  21. [21]
    Ferguson, B., Wang, S., Gray, D., Abbott, D., Zhang, X.C.: Identification of biological tissue using chirped probe THz imaging. Microelectronics Journal 33 (2002) 1043–105CrossRefGoogle Scholar
  22. [22]
    Mittleman, D.M., Jacobsen, R.H., Nuss, M.C.: T-ray imaging. IEEE Journal of Selected Topics in Quantum Electronics 2 (1996) 679–69CrossRefGoogle Scholar
  23. [23]
    Mickan, S., Abbott, D., Munch, J., Zhang, X., van Doorn, T.: Analysis of system trade-offs for terahertz imaging. Microelectronics Journal 31 (2000) 503–51CrossRefGoogle Scholar
  24. [24]
    Ferguson, B., Abbott, D.: De-noising techniques for terahertz responses of biological samples. Microelectronics Journal 32 (2001) 943–95CrossRefGoogle Scholar
  25. [25]
    Auston, D.H., Cheung, K.P., Valdmanis, J.A., Kleinman, D.A.: Coherent time-domain far-infrared spectroscopy with femtosecond pulses. Journal of the Optical Society of America A: Optics Image Science and Vision 1 (1984) 1278Google Scholar
  26. [26]
    Zhang, X.C., Jin, Y., Hu, B.B., Li, X., Auston, D.H.: Optoelectronic study of piezoelectric field in strained-layer superlattices. Superlattices and Microstructures 12 (1992) 487–490CrossRefGoogle Scholar
  27. [27]
    Shan, J., Weling, A.S., Knoesel, E., Bartels, L., Bonn, M., Nahata, A.: Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling. Optics Letters 25 (2000) 426–42Google Scholar
  28. [28]
    Ruffin, A.B., Decker, J., Sanchez-Palencia, L., Le Hors, L., Whitaker, J.F., Norris, T.B.: Time reversal and object reconstruction with single-cycle pulses. Optics Letters 26 (2001) 681–68Google Scholar
  29. [29]
    Mittleman, D.M., ed.: Sensing with Terahertz Radiation. Springer-Verlag, Berlin (2003)Google Scholar
  30. [30]
    Zimdars, D.: Commercial T-ray systems accelerate imaging research. Laser Focus World 37 (2001) 91Google Scholar
  31. [31]
    Arnone, D.D., Ciesla, C.M., Corchia, A., Egusa, S., Pepper, M.: Applications of terahertz (THz) technology to medical imaging. Proceedings of SPIE 3828 (1999) 209–219 Terahertz Spectroscopy and Applications 11; JM Chamberlain (ed.).Google Scholar
  32. [32]
    Mittleman, D.M., Gupta, M., Neelamani, R., Baraniuk, R.G., Rudd, J.V., Koch, M.: Recent advances in terahertz imaging. Applied Physics B-Lasers and Optics 68 (1999) 1085–109Google Scholar
  33. [33]
    Smye, S.W., Chamberlain, J.M., Fitzgerald, A.J., Berry, E.: The interaction between terahertz radiation and biological tissue. Physics in Medicine and Biology 46 (2001) R101–R112CrossRefGoogle Scholar
  34. [34]
    Hadjiloucas, S., Karatzas, L.S., Bowen, J.W.: Measurements of leaf water content using terahertz radiation. IEEE Transactions on Microwave Theory and Techniques 47 (1999) 142–149CrossRefGoogle Scholar
  35. [35]
    Boulay, R., Gagnon, R., Rochette, D., Izatt, J.R.: Paper sheet moisture measurements in the far-infrared. International Journal of Infrared and Millimeter Waves 5 (1984) 1221–1234CrossRefGoogle Scholar
  36. [36]
    Cole, B.E., Woodward, R., Crawley, D., Wallace, V.P., Arnone, D.D., Pepper, M.: Terahertz imaging and spectroscopy of human skin, invivo. Commercial and Biomedical Applications of Ultrashort Pulse Lasers; Laser Plasma Generation and Diagnostics 4276 (2001) 1–10Google Scholar
  37. [37]
    Institute, A.N.S.: American National Standard for Safe Use of Lasers (ANSI Z136.1-2000). Laser Institute of America, Orlando, FL (2000)Google Scholar
  38. [38]
    Sliney, D.H., Wolbarsht, M.L.: Laser Safety Standards: Evolution and Rationale. Safety with Lasers and Other Optical Sources. Plenum Press, New York (1980)Google Scholar
  39. [39]
    Clothier, R.H., Bourne, N.: Effect of THz exposure on human primary keratinocyte differentiation and viability. Journal of Biological Physics 29 (2003) 179–185CrossRefGoogle Scholar
  40. [40]
    Scarfi, M.R., Romano, M., Di Pietro, R., Zeni, O., Doria, A., Gallerano, G.P.: THz exposure of whole blood for the study of biological effects on human lymphocytes. Journal of Biological Physics 29 (2003) 171–176Google Scholar
  41. [41]
    Berry, E., Walker, G.C., Fitzgerald, A.J., Chamberlain, J.M., Smye, S.W., Miles, R.E.: Do in vivo terahertz imaging systems comply with safety guidelines? Journal of Laser Applications 15 (2003) 192–198Google Scholar
  42. [42]
    Han, P.Y., Tani, M., Usami, M., Kono, S., Kersting, R., Zhang, X.C.: A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy. Journal of Applied Physics 89 (2001) 2357–235Google Scholar
  43. [43]
    Bolivar, P.H., Brucherseifer, M., Nagel, M., Kurz, H., Bosserhoff, A., Buttner, R.: Label-free probing of genes by time-domain terahertz sensing. Physics in Medicine and Biology 47 (2002) 3815–3821CrossRefGoogle Scholar
  44. [44]
    Bezant, C.D.: Application of THz Pulses in Semiconductor Relaxation and Biomedical Imaging Studies. PhD thesis, Department of Physics (2000)Google Scholar
  45. [45]
    Han, P.Y., Cho, G.C., Zhang, X.C.: Time-domain transillumination of biological tissues with terahertz pulses. Optics Letters 25 (2000) 242–24Google Scholar
  46. [46]
    Ciesla, C.M., Arnone, D.D., Corchia, A., Crawley, D., Longbottom, C., Linfield, E.H.: Biomedical applications of terahertz-pulse imaging. Commercial and Biomedical Applications of Ultrafast Lasers II 3934 (2000) 73–8Google Scholar
  47. [47]
    Knobloch, P., Schildknecht, C., Kleine-Ostmann, T., Koch, M., Hoffmann, S., Hofmann, M.: Medical THz imaging: an investigation of histopathological samples. Physics in Medicine and Biology 47 (2002) 3875–388CrossRefGoogle Scholar
  48. [48]
    Woodward, R.M., Cole, B.E., Wallace, V.P., Pye, R.J., Arnone, D.D., Linfield, E.H.: Terahertz-pulse imaging in reflection geometry of human skin cancer and skin tissue. Physics in Medicine and Biology 47 (2002) 3853–3863CrossRefGoogle Scholar
  49. [49]
    Fitzgerald, A.J., Berry, E., Zinovev, N.N., Walker, G.C., Smith, M.A., Chamberlain, J.M.: An introduction to medical imaging with coherent terahertz frequency radiation. Physics in Medicine and Biology 47 (2002) R67–R8CrossRefGoogle Scholar
  50. [50]
    Hagness, S.C., Taflove, A., Bridges, J.E.: Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors. IEEE Transactions on Biomedical Engineering 45 (1998) 1470–147CrossRefGoogle Scholar
  51. [51]
    Wang, S., Ferguson, B., Mannella, C., Abbott, D., Zhang, X.C.: Powder detection using THz imaging. In: Proceedings of Conference on Lasers and Electro-Optics, Long Beach, CA (2002) 132Google Scholar
  52. [52]
    McClatchey, K., Reiten, M.T., Cheville, R.A.: Time-resolved synthetic aperture terahertz impulse imaging. Applied Physics Letters 79 (2001) 4485–448CrossRefGoogle Scholar
  53. [53]
    Jacobsen, R.H., Mittleman, D.M., Nuss, M.C.: Chemical recognition of gases and gas mixtures with terahertz waves. Optics Letters 21 (1996) 2011–201Google Scholar
  54. [54]
    Koch, M.: Biomedical applications of THz imaging. In Mittleman, D., ed.: Sensing with Terahertz Radiation. Springer-Verlag, Berlin (2003) 295–316Google Scholar
  55. [55]
    Siegel, P.H.: Terahertz technology. IEEE Transactions on Microwave Theory and Techniques 50 (2002) 910–928CrossRefGoogle Scholar
  56. [56]
    Anderton, R.N., Appleby, R., Borrill, J.R., Gleed, D.G., Price, S., Salmon, N.A. In: Prospects of Imaging Applications [Military]. IEE (1997) 4/1–4/10Google Scholar
  57. [57]
    Papoulis, A.: The Fourier Integral and Its Application. McGraw-Hill, New York (1962)Google Scholar
  58. [58]
    Akay, M., ed.: Time Frequency and Wavelets in Biomedical Signal Processing. IEEE Press and John Wiley & Sons (1998)Google Scholar
  59. [59]
    Xu, X.L., Tewfik, A.H., Greenleaf, J.F.: Time-delay estimation using wavelet transform for pulsed-wave ultrasound. Annals of Biomedical Engineering 23 (1995) 612–621Google Scholar
  60. [60]
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision. second edn. Brooks/Cole Publishing Company, Pacific Grove, CA (1999)Google Scholar
  61. [61]
    Georgiou, G., Cohen, F.S., Piccoli, C.W., Forsberg, F., Goldberg, B.B.: Tissue characterization using the continuous wavelet transform, part II: Application on breast RF data. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 48 (2001) 364–373Google Scholar
  62. [62]
    Sun, M., Sclabassi, R.J.: Wavelet feature extraction from neurophysiological signals. In Akay, M., ed.: Time Frequency and Wavelets in Biomedical Signal Processing. IEEE Press and John Wiley & Sons (1998) 305–321Google Scholar
  63. [63]
    Ching, P.C., So, H.C., Wu, S.Q.: On wavelet denoising and its applications to time delay estimation. IEEE Transactions on Signal Processing 47 (1999) 2879–2882CrossRefGoogle Scholar
  64. [64]
    Coifman, R.R., Wickerhauser, M.V.: Experiments with adapted wavelet de-noising for medical signals and images. In Akay, M., ed.: Time Frequency and Wavelets in Biomedical Signal Processing. IEEE Press and John Wiley & Sons, Piscataway, NJ (1998) 323–346Google Scholar
  65. [65]
    Sardy, S., Tseng, P., Bruce, A.: Robust wavelet denoising. IEEE Transactions on Signal Processing 49 (2001) 1146–115CrossRefGoogle Scholar
  66. [66]
    Lasch, P., Naumann, D.: FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques. Cellular and Molecular Biology 44 (1998) 189–20Google Scholar
  67. [67]
    Carmona, R., Hwang, W.L., Torresani, B.: Practical Time-Frequency Analysis. Academic Press, San Diego (1998)Google Scholar
  68. [68]
    Gioswami J. C., Chan, A.K.: Fundamentals of Wavelets: Theory, Algorithms, and Applications. John Wiley and Sons, New York (1999)Google Scholar
  69. [69]
    Weiss, L.G.: Wavelets and wideband correlation processing. IEEE Signal Processing Magazine 11 (1994) 13–32CrossRefGoogle Scholar
  70. [70]
    Young, R.K.: Wavelet Theory and Its Applications. Kluwer, Boston (1993)Google Scholar
  71. [71]
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium 1. (1967) 281–297zbMATHMathSciNetGoogle Scholar
  72. [72]
    Kaufmann, L., Rousseeuw, P.J.: Finding groups in data: An introduction to cluster analysis. John Wiley & Sons, New York (1990)Google Scholar
  73. [73]
    Webb, P.A.: A review of rapid prototyping (RP) techniques in the medical and biomedical sector. Journal of Medical Engineering & Technology 24 (2000) 149–15CrossRefMathSciNetGoogle Scholar
  74. [74]
    Goulden, C.H.: Methods of Statistical Analysis. second edn. John Wiley and Sons, New York (1956)Google Scholar
  75. [75]
    Hartigan, J.: Clustering Algorithms. John Wiley and Sons, New York (1975)Google Scholar
  76. [76]
    Handley, J.W., Fitzgerald, A.J., Berry, E., Boyle, R.D.: Wavelet compression in medical terahertz-pulsed imaging. Physics in Medicine and Biology 47 (2002) 3885–389CrossRefGoogle Scholar
  77. [77]
    Duvillaret, L., Garet, F., Coutaz, J.L.: A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics 2 (1996) 739–74CrossRefGoogle Scholar
  78. [78]
    Dorney, T.D., Baraniuk, R.G., Mittleman, D.M.: Material parameter estimation with terahertz time-domain spectroscopy. Journal of the Optical Society of America, A: Optics Image Science and Vision 18 (2001) 1562–157Google Scholar
  79. [79]
    Highnam, R., Brady, M.: Mammographic Image Analysis. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  80. [80]
    Cotton, S., Claridge, E., Hall, P.: Noninvasive skin imaging. Information Processing in Medical Imaging 1230 (1997) 501–50Google Scholar
  81. [81]
    Duvillaret, L., Garet, F., Roux, J.F., Coutaz, J.L.: Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas. IEEE Journal of Selected Topics in Quantum Electronics 7 (2001) 615–62CrossRefGoogle Scholar
  82. [82]
    Lee, Y., Meade, T., Norris, T.B., Galvanauskas, A.: Tunable narrow-band terahertz generation from periodically poled lithium niobate. Applied Physics Letters 78 (2001) 3583–358Google Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Elizabeth Berry
    • 1
  • Roger D Boyle
    • 2
  • Anthony J Fitzgerald
    • 3
  • James W Handley
    • 4
  1. 1.Academic Unit of Medical PhysicsUniversity of LeedsUK
  2. 2.School of ComputingCentre of Medical Imaging ResearchUK
  3. 3.Teraview Ltd.CambridgeUK
  4. 4.School of ComputingCentre of Medical Imaging ResearchUK

Personalised recommendations