Visualization and Segmentation Techniques in 3D Ultrasound Images

  • Aaron Fenster
  • Mingyue Ding
  • Ning Hu
  • Hanif M. Ladak
  • Guokuan Li
  • Neale Cardinal
  • Dónal B. Downey
Part of the Advances in Pattern Recognition book series (ACVPR)


Although ultrasonography is an important cost-effective imaging modality, technical improvements are needed before its full potential is realized for accurate and quantitative monitoring of disease progression or regression. 2D viewing of 3D anatomy, using conventional ultrasonography limits our ability to quantify and visualize pathology and is partly responsible for the reported variability in diagnosis and monitoring of disease progression. Efforts of investigators have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques using existing conventional ultrasound systems, reconstructing the information into 3D images, and then allowing interactive viewing of the 3D images on inexpensive desktop computers. In addition, the availability of 3D ultrasound images has allowed the development of automated and semi-automated segmentation techniques to quantify organ and pathology volume for monitoring of disease. In this chapter, we introduce the basic principles of 3D ultrasound imaging as well as its visualization techniques. Then, we describe the use of 3D ultrasound in interventional procedures and discuss applications of 3D segmentation techniques of the prostates, needles, and seeds used in prostate brachytherapy.


Mechanical Assembly Transrectal Ultrasound Deformable Model Medical Image Analysis Prostate Brachytherapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fenster, A., Downey, D.B., Cardinal, H.N.: Topical review: Three-dimensional ultrasound imaging. Phys. Med. Biol. 46 (2001) R67–R99CrossRefGoogle Scholar
  2. [2]
    Nelson, T.R., Downey, D.B., Pretorius, D.H., Fenster, A.: Three-dimensional ultrasound. Lippincott-Raven, Philadelphia (1999)Google Scholar
  3. [3]
    Fenster, A., Downey, D.B.: Three-dimensional ultrasound imaging: A review. EEE Engineering in Medicine and Biology 15 (1996) 41–51Google Scholar
  4. [4]
    Smith, S.W., Trahey, G.E., von Ramm, O.T.: Two-dimensional arrays for medical ultrasound. Ultrason Imaging 14 (1992) 213–33CrossRefGoogle Scholar
  5. [5]
    Tvon Ramm, O.T., Smith, S.W., Pavy, H.G.J.: High-speed ultrasound volumetric imaging system. part ii. parallel processing and image display. IEEE Trans. Ultrason Ferroelec Freq. Contr. 38 (1991) 109–115Google Scholar
  6. [6]
    Downey, D.B., Fenster, A.: Three-dimensional power doppler detection of prostatic cancer. Am. J. Roentgenol 165 (1995a) 741Google Scholar
  7. [7]
    Downey, D.B., Fenster, A.: Vascular imaging with a three-dimensional power doppler system. Am. J. Roentgenol 165 (1995b) 665–8Google Scholar
  8. [8]
    Silverman, R.H., Rondeau, M.J., Lizzi, F.L., Coleman, D.J.: Three-dimensional high-frequency ultrasonic parameter imaging of anterior segment pathology. Ophthalmology 102 (1995) 837–43Google Scholar
  9. [9]
    Guo, Z., Fenster, A.: Three-dimensional power doppler imaging: a phantom study to quantify vessel stenosis. Ultrasound Med. Biol. 22 (1996) 1059–69CrossRefGoogle Scholar
  10. [10]
    Picot, P.A., Rickey, D.W., Mitchell, R., Rankin, R.N., Fenster, A.: Three-dimensional color doppler imaging of the carotid artery. In: SPIE Proceedings: Image Capture, Formatting and Display. Volume 1444., Atlanta, GA (1991) 206–213Google Scholar
  11. [11]
    Picot, P.A., Rickey, D.W., Mitchell, R., Rankin, R.N., Fenster, A.: Three-dimensional color doppler imaging. Ultrasound Med. Biol. 19 (1993) 95–104CrossRefGoogle Scholar
  12. [12]
    Pretorius, D.H., Nelson, T.R., Jaffe, J.S.: Three-dimensional sonographic analysis based on color flow doppler and grayscale image data: a preliminary report. J. Ultrasound Med. 11 (1992) 225–32Google Scholar
  13. [13]
    Bamber, J.C., Eckersley, R.J., Hubregtse, P., Bush, N.L., Bell, D.S., Crawford, D.C.: Data processing for 3D ultrasound visualization of tumour anatomy and blood flow. SPIE 1808 (1992) 651–663Google Scholar
  14. [14]
    Guo, Z., Moreau, M., Rickey, D.W., Picot, P.A., Fenster, A.: Quantitative investigation of in vitro flow using three-dimensional color doppler ultrasound. Ultrasound Med. Biol. 21 (1995) 807–16CrossRefGoogle Scholar
  15. [15]
    Cardinal, H.N., Gill, J.D., Fenster, A.: Analysis of geometrical distortion and statistical variance in length, area, and volume in a linearly scanned 3d ultrasound image. IEEE Transactions on Medical Imaging 19 (2000) 632–651CrossRefGoogle Scholar
  16. [16]
    Delabays, A., Pandian, N.G., Cao, Q.L., Sugeng, L., Marx, G., Ludomirski, A., Schwartz, S.L.: Transthoracic real-time three-dimensional echocardiography using a fanlike scanning approach for data acquisition: methods, strengths, problems, and initial clinical experience. Echocardiography 12 (1995) 49–59Google Scholar
  17. [17]
    Downey, D.B., Fenster, A.: Three-dimensional orbital ultrasonography. Can. J Ophthalmol 30 (1995c) 395–8Google Scholar
  18. [18]
    Elliot, T.L., Downey, D.B., Tong, S., McLean, C.A., Fenster, A.: Accuracy of prostate volume measurements in vitro using three-dimensional ultrasound. Acad. Radiol. 3 (1996) 401–6Google Scholar
  19. [19]
    Tong, S., Downey, D.B., Cardinal, H.N., Fenster, A.: A three-dimensional ultrasound prostate imaging system. Ultrasound Med. Biol. 22 (1996) 735–46CrossRefGoogle Scholar
  20. [20]
    Chin, J.L., Downey, D.B., Mulligan, M., Fenster, A.: Three-dimensional transrectal ultrasound guided cryoablation for localized prostate cancer in nonsurgical candidates: a feasibility study and report of early results. J. Urol. 159 (1998) 910–4Google Scholar
  21. [21]
    Tong, S., Cardinal, H.N., Downey, D.B., Fenster, A.: Analysis of linear, area and volume distortion in 3d ultrasound imaging. Ultrasound Med. Biol. 24 (1998) 355–73Google Scholar
  22. [22]
    Brinkley, J.F., McCallum, W.D., Muramatsu, S.K., Liu, D.Y.: Fetal weight estimation from lengths and volumes found by three-dimensional ultrasonic measurements. J. Ultrasound Med. 3 (1984) 163–8Google Scholar
  23. [23]
    King, D.L., King, D.J., Shao, M.Y.: Three-dimensional spatial registration and interactive display of position and orientation of real-time ultrasound images. J. Ultrasound Med. 9 (1990) 525–32Google Scholar
  24. [24]
    Bonilla-Musoles, F., Raga, F., Osborne, N.G., Blanes, J.: Use of three-dimensional ultrasonography for the study of normal and pathologic morphology of the human embryo and fetus: preliminary report. J. Ultrasound Med. 14 (1995) 757–65Google Scholar
  25. [25]
    Detmer, P.R., Bashein, G., Hodges, T., Beach, K.W., Filer, E.P., Burns, D.H., Strandness, D.E.J.: Three-dimensional ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation. Ultrasound Med. Biol. 20 (1994) 923–36CrossRefGoogle Scholar
  26. [26]
    Ganapathy, U., Kaufman, A.: 3d acquisition and visualization of ultrasound data. In: SPIE Proc. Of Visualization in biomedical computing SPIE. Volume 1808. (1992) 535–545Google Scholar
  27. [27]
    Gilja, O.H., Detmer, P.R., Jong, J.M., Leotta, D.F., Li, X.N., Beach, K.W., Martin, R., Strandness, D.E.J.: Intragastric distribution and gastric emptying assessed by three-dimensional ultrasonography. Gastroenterology 113 (1997) 38–49Google Scholar
  28. [28]
    Hughes, S.W., D’Arcy, T.J., Maxwell, D.J., Chiu, W., Milner, A., Saunders, J.E., Sheppard, R.J.: Volume estimation from multiplanar 2D ultrasound images using a remote electromagnetic position and orientation sensor. Ultrasound Med. Biol. 22 (1996) 561–72CrossRefGoogle Scholar
  29. [29]
    Leotta, D.F., Detmer, P.R., Martin, R.W.: Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging. Ultrasound Med. Biol. 23 (1997) 597–609CrossRefGoogle Scholar
  30. [30]
    Nelson, T.R., Pretorius, D.H.: Visualization of the fetal thoracic skeleton with three-dimensional sonography: a preliminary report. Am. J. Roentgenol 164 (1995) 1485–8Google Scholar
  31. [31]
    Tuthill, T.A., Krucker, J.F., Fowlkes, J.B., Carson, P.L.: Automated three-dimensional us frame positioning computed from elevational speckle decorrelation. Radiology 209 (1998) 575–82Google Scholar
  32. [32]
    Chin, J.L., Downey, D.B., Onik, G., Fenster, A.: Three-dimensional prostate ultrasound and its application to cryosurgery. Tech. Urol. 2 (1996) 187–93Google Scholar
  33. [33]
    Kirbach, D., Whittingham, T.A.: Three-dimensional ultrasound-the Kretztechnik-Voluson approach. European J. Ultrasound 1 (1994) 85–89Google Scholar
  34. [34]
    Zosmer, N., Jurkovic, D., Jauniaux, E., Gruboeck, K., Lees, C., Campbell, S.: Selection and identification of standard cardiac views from three-dimensional volume scans of the fetal thorax. J Ultrasound. Med. 15 (1996) 25–32Google Scholar
  35. [35]
    Levoy, M.: Volume rendering, a hybrid ray tracer for rendering polygon and volume data. IEEE Computer Graphics and Applications 10 (1990) 33–40CrossRefGoogle Scholar
  36. [36]
    Garfinkel, L., Mushinski, M.: Cancer incidence, mortality, and survival trend in four leading sites. Stat. Bull. 75 (1994) 19–27Google Scholar
  37. [37]
    Nag, S.: Principles and Practice of Brachytherapy. Futura Publishing Company, Inc, Amonk, NY (1997)Google Scholar
  38. [38]
    Richard, W.D., Grimmell, C.K., Bedigian, K., Frank, K.J.: A method for 3D prostate imaging using transrectal ultrasound. Comput. Med. Imaging Graphics 17 (1993) 73–79Google Scholar
  39. [39]
    Richard, W.D., Keen, C.G.: A method for 3D prostate imaging using transrectal ultrasound. Comput. Med. Imaging Graphics 20 (1996) 131–140Google Scholar
  40. [40]
    Aarnink, R.G., Giesen, R.J.B., Huynen, A.L., Debruyne, F.M.J., Wijkstra, H.: Automated prostate volume determination. In: Proc. of IEEE Eng. Med. Biol. Soc. Volume 14. (1992) 2146–2147Google Scholar
  41. [41]
    Aarnink, R.G., Giesen, R.J.B., Huynen, A.L., De la Rosette, J.J., Debruyne, F.M.J., Wijkstra, H.: A practical clinical method for contour determination in ultrasonographic prostate images. Ultrasound Med. Biol. 20 (1994) 705–717CrossRefGoogle Scholar
  42. [42]
    Aarnink, R., Giesen, R.J.B., Huynen, A.L., De la Rosette, J.J., Debruyne, F.M.J., Wijkstra, H.: Automated prostate volume determination with ultrasonographic imaging. J. Urol. 153 (1995) 1549–1554Google Scholar
  43. [43]
    Aarnink, R.G., Giesen, R.J.B., Huynen, A.L., De la Rosette, J.J., Debruyne, F.M.J., Wijkstra, H.: Edge detection in prostatic ultrasound images using integrated edges maps. Ultrasounics 36 (1998) 635–642Google Scholar
  44. [44]
    Liu, Y.J., Ng, W.S., Teo, M.Y., Lim, H.C.: Computerised prostate boundary estimation of ultrasound images using radial bas-relief method. Med. Biol. Eng. Comput. 35 (1997) 445–454Google Scholar
  45. [45]
    Kwoh, C.K., Teo, M.Y., Ng, W.S., Tan, S.N., Jones, L.M.: Outlining the prostate boundary using the harmonics method. Med. Biol. Eng. Comput. 36 (1998) 768–771Google Scholar
  46. [46]
    Pathak, S.D., Aanink, R.G., De la Rosette, J.J., Chalara, V., Wijkstra, H., Haryror, D.R., Debruyne, F.M.J., Kim, Y.: Quantitative three-dimensional transrectal ultrasound (TRUS) for prostate imaging. In: Proc. of SPIE. Volume 3335. (1998) 83–92Google Scholar
  47. [47]
    Pathak, S.D., Chalara, V., Haryror, D.R., Kim, Y.: Edge-guided delineration of the prostate in transrectal ultrasound images. In: Proc. of the 1st Joint Meeting of the Biology Engineering Society and IEEE Engineering in Medicine and Biology Society, Atlanta, GA (1999) 1056Google Scholar
  48. [48]
    Pathak, S.D., Chalara, V., Haryror, D.R., Kim, Y.: Edge-guided boundary delineration in prostate in ultrasound images. IEEE TMI 19 (2000) 1211–1219Google Scholar
  49. [49]
    Knoll, C., Alcaniz, M., Grau, V., Monserrat, C., Juan, M.C.: Outlining of the prostate using snakes with shape restrictions based on the wavelet transform. Pattern Recognition 32 (1999) 1767–1781CrossRefGoogle Scholar
  50. [50]
    Garfinkel, L., Mushinski, M.: A three-dimensional deformable model for segmentation of human prostate from ultrasound images. Med. Phys. 28 (2001) 2147–2153Google Scholar
  51. [51]
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1 (1987) 321–331Google Scholar
  52. [52]
    Terzopoulos, D., Fleischer, K.: Deformable models. The Visual Computer 4 (1988) 306–331CrossRefGoogle Scholar
  53. [53]
    Singh, A., Goldgof, D., Terzopoulos, D.: Deformable Models in Medical Image Analysis. IEEE Press, Los Alamitos, CA (1998)Google Scholar
  54. [54]
    McInerney, T., Terzopoulos, D.A.: A dynamic finite-element surface model for segmentation and tracking in multidimensional medical images with applications to cardiac 4D image analysis. Computer Medical Imaging Graphics 19 (1995) 69–83Google Scholar
  55. [55]
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: A survey. Medical image Analysis 1 (1996) 91–108CrossRefGoogle Scholar
  56. [56]
    McInerney, T., Terzopoulos, D.: Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Transactions on Medical Imaging 18 (1999) 840–850Google Scholar
  57. [57]
    McInerney, T., Terzopoulos, D.: T-snakes: Topology adaptive snakes. Medical Image Analysis 4 (2000) 73–91CrossRefGoogle Scholar
  58. [58]
    Keeve, E., Kikinis, R.: Deformable modeling of facial tissue. In: Proceedings of the First Joint BMES/EMBS Conference. Volume 1.1. (1999) 502Google Scholar
  59. [59]
    Sitek, A., Klein, G.J., Gullberg, G.T., Huesman, R.H.: Deformable model of the heart with fiber structure. IEEE Transactions on Nuclear Science 49 (2002) 789–793CrossRefGoogle Scholar
  60. [60]
    Metaxas, D.N., Kakadiaris, I.A.: Elastically adaptive deformable models. IEEE Transactions on Medical Imaging 24 (2002) 1310–1321Google Scholar
  61. [61]
    Miller, J.V., Breen, D.E., Lorensen, W.E., O’Bara, R.M., Wozny, M.J.: Geometrically deformable models: A method to extract closed geometric model from volume data. Computer Graphics 25 (91) 217–226Google Scholar
  62. [62]
    Lobret, S., Viergever, M.A.: A discrete dynamic contour model. IEEE Trans. Med. Image 14 (1995) 12–24Google Scholar
  63. [63]
    Ladak, H.M., Mao, F., Wang, Y., Downey, D.B., Steinman, D.A., Fenster, A.: Prostate boundary segmentation from 2D ultrasound images. Med. Phys. 27 (2000) 1777–1788CrossRefGoogle Scholar
  64. [64]
    Gill, J.D., Ladak, H.M., Steinman, D.A., Fenster, A.: Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images. Med Phys 27 (2000) 1333–1342CrossRefGoogle Scholar
  65. [65]
    Solina, F., Bajcsy, R.: Recovery of parametric models from range images: The case for superquadrics with global deformation. IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 131–147CrossRefGoogle Scholar
  66. [66]
    Schroeder, W.J., Martin, K.M., Avila, L.S., Law, C.C.: The VTK Users Guide. Kitware, Inc (1998)Google Scholar
  67. [67]
    Bonilla-Musoles, F., Raga, F., Osborne, N.G., Blanes, J.: Principal warps: Thin-plate splines and the decomposition of deformations., IEEE Trans. Pattern Analysis and Machine Intelligence 11 (1989) 567–585Google Scholar
  68. [68]
    Lichtenbelt, B., Crane, R., Naqvi, S.: Introduction to Volume Rendering. Prentice-Hall, Upper Saddle River, NJ (1998)Google Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Aaron Fenster
    • 1
  • Mingyue Ding
    • 1
  • Ning Hu
    • 1
  • Hanif M. Ladak
    • 1
  • Guokuan Li
    • 1
  • Neale Cardinal
    • 1
  • Dónal B. Downey
    • 1
  1. 1.Robarts Research InstituteLondonCanada

Personalised recommendations