Advertisement

Cardiovascular MR Image Analysis

  • Milan Sonka
  • Daniel R. Thedens
  • Boudewijn P. F. Lelieveldt
  • Steven C. Mitchell
  • Rob J. van der Geest
  • Johan H. C. Reiber
Chapter
  • 830 Downloads
Part of the Advances in Pattern Recognition book series (ACVPR)

Summary

Magnetic resonance (MR) imaging allows 2D, 3D, and 4D imaging of living bodies. The chapter1 briefly introduces the major principles of magnetic resonance image generation, and focuses on application of computer vision techniques and approaches to several cardiovascular image analysis tasks. The enormous amounts of generated MR data require employment of automated image analysis techniques to provide quantitative indices of structure and function. Techniques for 3D segmentation and quantitative assessment of left and right cardiac ventricles, arterial and venous trees, and arterial plaques are presented.

Keywords

Cardiac Magnetic Resonance Medial Axis Active Appearance Model Magnetic Resonance Image Analysis Double Inversion Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bloch, F.: Nuclear induction. Phys. Rev. 70 (1946) 460–473Google Scholar
  2. [2]
    Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69 (1946) 37–38CrossRefGoogle Scholar
  3. [3]
    Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242 (1973) 190–191CrossRefGoogle Scholar
  4. [4]
    Lanzer, P., Barta, C., Botvinick, E.H., Wiesendanger, H.U., Modin, G., Higgins, C.B.: ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 155 (1985) 681–686Google Scholar
  5. [5]
    Danias, P., McConnell, M., Khasgiwala, V., Chuang, M., Edelman, R., W.J., M.: Prospective navigator correction of image position for coronary MR angiography. Radiology 203 (1997) 733–736Google Scholar
  6. [6]
    Wang, Y., Rossman, P.J., Grimm, R.C., Riederer, S.J., Ehman, R.L.: Navigator echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology 198 (1996) 55–60Google Scholar
  7. [7]
    Yang, P., Kerr, A., Liu, A., Hardy, C., Meyer, C., Macovski, A., Pauly, J., Hu, B.: New real-time interactive cardiac magnetic resonance imaging system complements echocardiography. J. Am. Coll. Cardiol 32 (1998) 2049–2056CrossRefGoogle Scholar
  8. [8]
    Simonetti, O., Finn, J., White, R., Laub, G., Henry, D.A.: “Black blood” T2-weighted inversion recovery MR imaging of the heart. Radiology 199 (1999) 49–57Google Scholar
  9. [9]
    Atkinson, D.J., Edelman, R.R.: Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology 178 (1991) 357–360Google Scholar
  10. [10]
    Oppelt, A., Graumann, R., Barfuss, H., Fischer, H., Hartl, W., Shajor, W.: FISP: a new fast MRI sequence. Electromedia 54 (1986) 15–18Google Scholar
  11. [11]
    Barkhausen, J., Ruehm, S.G., Goyen, M., Buck, T., Laub, G., Debatin, J.F.: MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219 (2001) 264–269Google Scholar
  12. [12]
    Plein, S., Bloomer, T.N., Ridgway, J.P., Jones, T.R., Bainbridge, G.J., Sivananthan, M.U.: Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J. Magn. Reson. Imaging 14 (2001) 230–236Google Scholar
  13. [13]
    Buser, P.T., Auffermann, W., Holt, W.W., Wagner, S., Kircher, B., Wolfe, C., Higgins, C.B.: Noninvasive evaluation of global left ventricular function with use of cine nuclear magnetic resonance. J Am Coll Cardiol 13 (1989) 1294–1300Google Scholar
  14. [14]
    Foo, T.K.F., Ho, V.B., Kraitchman, D.: Single breath-hold single-phase and CINE 3D acquisition using variable temporal k-space sampling. In: Proc. ISMRM, 9th Annual Meeting, Glasgow (2001) 112Google Scholar
  15. [15]
    Scheffler, K.: 3D cardiac cine imaging in a single breath-hold using elliptically reordered 3D trueFISP. In: Proc. ISMRM, 9th Annual Meeting, Glasgow (2001) 113Google Scholar
  16. [16]
    Sodickson, D., Manning, W.: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 38 (1997) 591–603Google Scholar
  17. [17]
    Weiger, M., Pruessmann, K., Boesiger, P.: Cardiac real-time imaging using SENSE. Magn. Reson. Med. 43 (2000) 177–184CrossRefGoogle Scholar
  18. [18]
    Madore, B., Glover, G., Pelc, N.: Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn. Reson. Med. 42 (1999) 813–828CrossRefGoogle Scholar
  19. [19]
    Osman, N., Kerwin, W., McVeigh, E., Prince, J.: Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn. Reson. Med. 42 (1999) 1048–1060CrossRefGoogle Scholar
  20. [20]
    Lima, J.A., Judd, R.M., Bazille, A., Schulman, S.P., Atalar, E., Zerhouni, E.A.: Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI: Potential mechanisms. Circulation 92 (1995) 1117–1125Google Scholar
  21. [21]
    Wu, K.C., Zerhouni, E.A., Judd, R.M., Lugo-Olivieri, C.H., Barouch, L.A., Schulman, S.P., Blumenthal, R.S., Lima, J.A.: Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97 (1998) 765–772Google Scholar
  22. [22]
    Kim, R.J., Fieno, D.S., Parrish, T.B., Harris, K., Chen, E.L., Simonetti, O., Bundy, J., Finn, J.P., Klocke, F.J., Judd, R.M.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100 (1999) 1992–2002Google Scholar
  23. [23]
    Rehwald, W.G., Fieno, D.S., Chen, E.L., Kim, R.J., Judd, R.M.: Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105 (2002) 224–229CrossRefGoogle Scholar
  24. [24]
    Brittain, J., Hu, B., Wright, G., Meyer, C., Macovski, A., Nishimura, D.: Coronary angiography with magnetization-prepared T2 contrast. Magn. Reson. Med. 33 (1995) 689–696Google Scholar
  25. [25]
    Peters, D., Korosec, F., Grist, T., Block, W., Holden, J., Vigen, K., C.A., M.: Undersampled projection reconstruction applied to MR angiography. Magn. Reson. Med. 43 (2000) 91–101Google Scholar
  26. [26]
    Taylor, A.M., Panting, J.R., Keegan, J., Gatehouse, P.D., Amin, D., Jhooti, P., Yang, G.Z., McGill, S., Burman, E.D., Francis, J.M., Firmin, D.N., Pennell, D.J.: Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J Magn Reson Imaging 9 (1999) 220–227Google Scholar
  27. [27]
    Stillman, A.E., Wilke, N., Li, D., Haacke, E.M., McLachlan, S.: Evaluation of ultrasmall superparamagnetic iron oxide to enhance magnetic resonance angiography of the renal and coronary arteries: work in progress. J. Comput. Assist. Tomogr. 20 (1996) 51–55CrossRefGoogle Scholar
  28. [28]
    Li, D., Dolan, B., Walovitch, R., Lauffer, R.: Three-dimensional MR imaging of coronary arteries using an intravascular contrast agent. Magn. Reson. Med. 39 (1998) 1014–1018Google Scholar
  29. [29]
    Frangi, A.F., Niessen, W.J., Viergever, M.A.: Three-dimensional modeling for functional analysis of cardiac images: A review. IEEE Trans. Med. Imaging 20 (2001) 2–25CrossRefGoogle Scholar
  30. [30]
    Vemuri, B.C., Radisavljevic, A.: Multiresolution stochastic hybrid shape models with fractal priors. ACM Trans. on Graphics 13 (1994) 177–207Google Scholar
  31. [31]
    Staib, L.H., Duncan, J.S.: Model-based deformable surface finding for medical images. IEEE Trans. Med. Imaging 15 (1996) 720–731CrossRefGoogle Scholar
  32. [32]
    Metaxas, D.N.: Physics-Based Deformable Models. Kluwer, Boston MA (1996)Google Scholar
  33. [33]
    Metaxas, D.N., Kakadiaris, I.A.: Elastically adaptive deformable models. IEEE Trans. Pattern Anal. and Machine Intelligence 24 (2002) 1310–1321Google Scholar
  34. [34]
    Cootes, T.F., Cooper, D.H., Taylor, C.J., Graham, J.: Trainable method of parametric shape description. Image and Vision Computing 10 (1992) 289–294CrossRefGoogle Scholar
  35. [35]
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Computer Vision and Image Understanding 61 (1995) 38–59CrossRefGoogle Scholar
  36. [36]
    Hill, A., Cootes, T.F., Taylor, C.J., Lindley, K.: Medical image interpretation: A generic approach using deformable templates. Medical Informatics 19 (1994) 47–59Google Scholar
  37. [37]
    Duta, N., Sonka, M.: Segmentation and interpretation of MR brain images: An improved active shape model. IEEE Trans. Med. Imaging 17 (1998) 1049–1062CrossRefGoogle Scholar
  38. [38]
    Kelemen, A., Szekely, G., Gerig, G.: Elastic model-based segmentation of 3D neurological data sets. IEEE Trans. Med. Imaging 18 (1999) 828–839CrossRefGoogle Scholar
  39. [39]
    Pizer, S.M., Joshi, S., Fletcher, T., Styner, M., Tracton, G., Chen, J.Z.: Segmentation of single-figure objects by deformable M-reps. In Niessen, W., Viergever, M., eds.: MICCAI 2001, Berlin, Springer Verlag (2001) 862–871Google Scholar
  40. [40]
    Stetten, G.D., Pizer, S.M.: Medial-node models to identify and measure objects in real-time 3D echocardiography. IEEE Trans. Med. Imaging 18 (1999) 1025–1034CrossRefGoogle Scholar
  41. [41]
    Shen, D., Herskovits, E.H., Davatzikos, C.: An adaptive focus statistical shape model for segmentation and shape modeling of 3D brain structures. IEEE Trans. Med. Imaging 20 (2001) 257–270CrossRefGoogle Scholar
  42. [42]
    Cootes, T.F., Beeston, C., Edwards, G.J., Taylor, C.J.: A unified framework for atlas matching using active appearance models. In Kuba, A., Samal, M., eds.: Information Processing in Medical Imaging. Lecture Notes in Computer Science, Visegrad, Hungary, Springer Verlag, Berlin (1999) 322–333Google Scholar
  43. [43]
    Cootes, T.F.: Statistical models of appearance for computer vision. Technical report, available at http://www.isbe.man.ac.uk/~bim/Models/app_model.ps.gz (1999)Google Scholar
  44. [44]
    Edwards, G., Taylor, C., Cootes, T.: Interpreting face images using active appearance models. In: 3rd International Conference on Automatic Face and Gesture Recognition 1998, Nara, Japan (1998) 300–305Google Scholar
  45. [45]
    Mitchell, S.C., Lelieveldt, B.P.F., van der Geest, R.J., Bosch, H.G., Reiber, J.H.C., Sonka, M.: Cardiac segmentation using active appearance models. IEEE Trans. Med. Imaging 20 (2001) 415–423CrossRefGoogle Scholar
  46. [46]
    Bosch, J.G., Mitchell, S.C., Lelieveldt, B.P.F., Nijland, F., Kamp, O., Sonka, M., Reiber, J.H.C.: Automatic segmentation of echocardiographic sequences by active appearance models. IEEE Trans. Med. Imaging 21 (2002) 1374–1383CrossRefGoogle Scholar
  47. [47]
    Lelieveldt, B., Mitchell, S., Bosch, J., van der Geest, R., Sonka, M., Reiber, J.: Time-continuous segmentation of cardiac image sequences using Active Appearance Motion Models. In: Information Processing in Medical Imaging: Lecture Notes in Computer Science, vol. 2082, New York, Springer-Verlag (2001) 446–452Google Scholar
  48. [48]
    Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P.F., van der Geest, R.J., Reiber, J.H.C., Sonka, M.: 3D Active Appearance Models: Segmentation of cardiac MR and ultrasound images. IEEE Trans. Med. Imaging 21 (2002) 1167–1178CrossRefGoogle Scholar
  49. [49]
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. 2nd edn. PWS, Pacific Grove, CA (1998)Google Scholar
  50. [50]
    Goodall, C.: Procrustes methods in the statistical analysis of shape. J. Royal Stat. Soc. B 53(2) (1991) 285–339zbMATHMathSciNetGoogle Scholar
  51. [51]
    Bookstein, F.L.: Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge, MA (1991)Google Scholar
  52. [52]
    Altmann, S.: Rotations, Quaternions and Double Groups. Clarendon Press, Oxford, England (1986)Google Scholar
  53. [53]
    Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. and Machine Intelligence 14 (1992) 239–256Google Scholar
  54. [54]
    Cootes, T.F., Edwards, G.J., Taylor, C.: Active appearance models. IEEE Trans. Pattern Anal. and Machine Intelligence 23 (2001) 681–685Google Scholar
  55. [55]
    Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms. In: Computer Vision and Pattern Recognition Conference. Volume 1. (2001) 1090–1097Google Scholar
  56. [56]
    van der Geest, R.J., Buller, V.G.M., Jansen, E., Lamb, H.J., Baur, L.H.B., van der Wall, E.E., de Roos, A., Reiber, J.H.C.: Comparison between manual and semiautomated analysis of left ventricular volume parameters from short-axis MR images. Journal of Computer-Assisted Tomography 21 (1997) 756–765Google Scholar
  57. [57]
    Jacob, G., Noble, A., Mulet-Parada, M., Blake, A.: Evaluating a robust contour tracker on echocardiographic sequences. Medical Image Analysis 3 (1999) 63–75CrossRefGoogle Scholar
  58. [58]
    Montagnat, J., Sermesant, M., Delingette, H., Malandain, G., Ayache, N.: Anisotropic filtering for model-based segmentation of 4D cylindrical echocardiographic images. Pattern Recognition Letters 24 (2003) 815–828CrossRefGoogle Scholar
  59. [59]
    Hamarneh, G., Gustavsson, T.: Deformable spatio-temporal shape models: Extending ASM to 2D+Time. In: 12th British Machine Vision Conference. (2001) 13–22Google Scholar
  60. [60]
    Barillot, C., Gibaud, B., Scarabin, J., Coatrieux, J.: 3D reconstruction of cerebral blood vessels. IEEE Computer Graphics Applications (1985) 13–19Google Scholar
  61. [61]
    Vignaud, J., Rabischong, P., Yver, J.P., Pardo, P., Thurel, C.: Multidirectional reconstruction of angiograms by stereogrammetry and computer: Application to computed tomography. Neuroradiology 18 (79) 1–7Google Scholar
  62. [62]
    Fessler, J., Macovski, A.: Object-based 3D reconstruction of arterial trees from magnetic resonance angiograms. IEEE Trans. Med. Imaging 10 (1991) 25–39CrossRefGoogle Scholar
  63. [63]
    Garreau, M., Coatrieux, J., Collorec, R., Chardenon, C.: A knowledgebased approach for 3D reconstruction and labeling of vascular networks from biplane angiographic projections. IEEE Trans. Med. Imaging 10 (1991) 122–131CrossRefGoogle Scholar
  64. [64]
    Suetens, P.: 3D reconstruction of the blood vessels of the brain from a stereoscopic pair of subtraction angiograms. Image and Vision Computing 1 (1983) 43–51CrossRefGoogle Scholar
  65. [65]
    Wink, O., Niessen, W., Viergever, M.: Fast quantification of abdominal aortic aneurysms from cta volumes. In: Medical Image Conference and Computer-Assisted Interventions (MICCAI’98), Berlin, Springer-Verlag (1998) 138–145Google Scholar
  66. [66]
    Masutani, Y., Schiemann, T., Hohne, K.: Vascular shape segmentation and structure extraction using a shape-based region-growing model. In: MICCAI ’98, First International Conference on Medical Image Computing and Computer-Assisted Intervention, Boston, MA, Springer0-Verlag, New York (1998) 1242–1249Google Scholar
  67. [67]
    Lobregt, S., Verbeek, P.W., Groen, F.C.A.: Three-dimensional skeletonization. IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (1980) 75–77Google Scholar
  68. [68]
    Saha, P.K., Chaudhuri, B.B., Chandra, B., Majumder, D.D.: Topology preservation in 3D digital space. Pattern Recognition 27 (1994) 295–300CrossRefMathSciNetGoogle Scholar
  69. [69]
    Higgins, W., Spyra, W., Ritman, E.: System for analyzing high-resolution three-dimensional coronary angiograms. IEEE Trans. Med. Imaging 15 (1996) 377–385Google Scholar
  70. [70]
    Pizer, S.M., Eberly, D.H., Morse, B.S., Fritsch, D.S.: Zoom invariant vision of figural shape: The mathematics of cores. Computer Vision and Image Understanding 69 (1998) 55–71CrossRefGoogle Scholar
  71. [71]
    Morse, B.S., Pizer, S.M., Liu, A.: Multiscale medial analysis of medical images. Proceedings on Information Processing in Medical Images 687 (1993) 112–131Google Scholar
  72. [72]
    Furst, J., Pizer, S.M., Eberly, D.: Marching cores: A method for extracting cores from 3d medical images. In: Proceedings of the Workshop on Mathematical Models in Biomedical Image Analysis, IEEE Computer Society Technical Committee on Pattern Anaysis and Machine Intelligence (1996) 124–130Google Scholar
  73. [73]
    Lorigo, L.M., Faugeras, O.D., Grimson, W.E.L., Keriven, R., Kikinis, R., Nabavi, A., Westin, C.F.: CURVES: Curve evolution for vessel segmentation. Medical Image Analysis 5 (2001) 195–206CrossRefGoogle Scholar
  74. [74]
    Sethian, J.A.: Level Set Methods. Cambridge University Press, Cambridge, MA (1996)Google Scholar
  75. [75]
    Sapiro, G.: Vactor-valued actrive contours. In: Proc. of Computer Vision and Pattern Recognition, Los Alamitos, CA, IEEE Comp. Soc. (1996) 680–685Google Scholar
  76. [76]
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. of Comp. Vision 22 (1997) 61–79Google Scholar
  77. [77]
    Carpenter, J.P., Owen, R.S., Holland, G.A., Baum, R.A., Barker, C.F., Perloff, L.J., Golden, M.A., Cope, C.: Magnetic resonance angiography of the aorta, iliac, and femoral arteries. Surgery 116 (1994) 17–23Google Scholar
  78. [78]
    Evans, A.J., Sostman, H.D., Knelson, M.H., Spritzer, C.E., Newman, G.E., Paine, S.S., Beam, C.A.: Detection of deep venous thrombosis: Prospective comparison of MR imaging with contrast venography. Am J Radiology 161 (131–139) 1993Google Scholar
  79. [79]
    Spritzer, C.E.: Venography of the extremities and pelvis. Magn Reson Imag Clinics of North Amer 1 (1993) 239–251Google Scholar
  80. [80]
    Smedby, O.: Visualizations of arteries and veins with 3D image processing methods. In: XI International Workshop on Magnetic Resonance Angiography: New Aspects on Visualisation of Macro-and Microcirculation. (1999) 102Google Scholar
  81. [81]
    Lei, T., Udupa, J.K., Saha, P.K., Odhner, D.: Artery-vein separation via MRA-An image processing approach. IEEE Trans. Med. Imaging 20 (2001) 689–703Google Scholar
  82. [82]
    Fritsch, D.S., Eberly, D., Pizer, S.M., McAuliffe, M.J.: Stimulated cores and their applications in Medical imaging. In: Information Processing in medical Imaging, Berlin, Springer-Verlag (1995) 365–368Google Scholar
  83. [83]
    Aylward, S., Pizer, S.M., Bullitt, E., Eberly, D.: Intensity ridge for tubular object segmentation and description. In: Proc. Workshop on Mathematical Methods in Biomedical Image Analysis, IEEE Catalog 96TB100056, IEEE (1996) 131–138Google Scholar
  84. [84]
    Bullitt, E., Aylward, S., Liu, A., Stone, J., Mukherji, S.K., Coffey, C., Gerig, G., Pizer, S.M.: 3D graph description of the intracerebral vasculature from segmented MRA and tests of accuracy by comparison with x-ray angiograms. In Kuba, A., Samal, M., Todd-Pokropek, A., eds.: Information Processing in Medical Imaging. Springer-Verlag, Berlin (1999) 308–321Google Scholar
  85. [85]
    Stefancik, R.M., Sonka, M.: Highly automated segmentation of arterial and venous trees from three-dimensional MR angiography. Int. J. Card. Imag. 17 (2001) 37–47Google Scholar
  86. [86]
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. 2nd edn. PWS, Pacific Grove, CA (1998) (1st edition Chapman and Hall, London, 1993).Google Scholar
  87. [87]
    Stefancik, R.M.: Segmentation of arteries and veins in contrast-enhanced magnetic resonance angiography using a graph-search technique. Master’s thesis, The University of Iowa (1999)Google Scholar
  88. [88]
    Udupa, J.K., Wei, L., Samarasekera, S., Miki, Y., van Buchem, M.A., Grossman, R.I.: Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE Trans. Med. Imaging 16 (1997) 598–609CrossRefGoogle Scholar
  89. [89]
    Rice, B.L., Udupa, J.K.: Fuzzy-connected clutter-free volume rendering for MR angiography. International Journal of Imaging Systems and Technology 11 (2000) 62–70CrossRefGoogle Scholar
  90. [90]
    Saha, P.K., Udupa, J.K., Odhner, D.: Scale-based fuzzy connected image segmentation: Theory, algorithms, and validation. Computer Vision and Image Understanding 77 (2000) 145–174CrossRefGoogle Scholar
  91. [91]
    Noeske, R., Seifert, F., Rhein, K.H., Rinneberg, H.: Human cardiac imaging at 3 T using phased array coils. Magnetic Resonance in Medicine 44 (2000) 978–982CrossRefGoogle Scholar
  92. [92]
    Yang, Y., Gu, H., Zhan, W., Xu, S., Silbersweig, D.A., Stern, E.: Simultaneous perfusion and BOLD imaging using reverse spiral scanning at 3T: characterization of functional contrast and susceptibility artifacts. Magnetic Resonance in Medicine 48 (2002) 278–289CrossRefGoogle Scholar
  93. [93]
    Fayad, Z.A., Fuster, V.: Characterization of atherosclerotic plaques by magnetic resonance imaging. Annals of the New York Academy of Sciences. 902 (2000) 173–86Google Scholar
  94. [94]
    Fuster, V., ed.: The Vulnerable Atherosclerotic Plaque: Understanding, Identification, and Modification. American Heart Association. Futura publishing company, Armonk, New York (1999)Google Scholar
  95. [95]
    Touissant, J.F., LaMuraglia, G.M., Southern, J.F.: Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94 (1996) 932–938Google Scholar
  96. [96]
    Shinnar, M., Fallon, J., Wehrli, S., Levin, M., Dalmacy, D., Fayad, Z., Badimon, J., Harrington, M., Harrington, E., Fuster, V.: The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. Arteriosclerosis, Thrombosis & Vascular Biology 19 (1999) 2756–2761Google Scholar
  97. [97]
    Yuan, C., Mitsumori, L.M., Ferguson, M.S., Polissar, N.L., Echelard, D., Ortiz, G., Small, R., Davies, J.W., Kerwin, W.S., Hatsukami, T.S.: In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation. 104 (2001) 2051–6Google Scholar
  98. [98]
    Yuan, C., Hatsukami, T.S., Obrien, K.D.: High-resolution magnetic resonance imaging of normal and atherosclerotic human coronary arteries ex vivo: discrimination of plaque tissue components. Journal of Investigative Medicine. 49 (2001) 491–9Google Scholar
  99. [99]
    Yuan, C., Zhang, S.X., Polissar, N.L., Echelard, D., Ortiz, G., Davis, J.W., Ellington, E., Ferguson, M.S., Hatsukami, T.S.: Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation. 105 (2002) 181–5Google Scholar
  100. [100]
    Yuan, C., Kerwin, W.S., Ferguson, M.S., Polissar, N., Zhang, S., Cai, J., Hatsukami, T.S.: Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J. Mag. Res. Imaging. 15 (2002) 62–7Google Scholar
  101. [101]
    Serfaty, J.M., Chaabane, L., Tabib, A., Chevallier, J.M., Briguet, A., Douek, P.C.: Atherosclerotic plaques: classification and characterization with t2-weighted high-spatial-resolution MRI imaging: an in vitro study. Radiology. 219 (2001) 403–10Google Scholar
  102. [102]
    Coombs, B.D., Rapp, J.H., Ursell, P.C., Reilly, L.M., Saloner, D.: Structure of plaque at carotid bifurcation: High-resolution MRI with histological correlation. Stroke 32 (2001) 2516–2521Google Scholar
  103. [103]
    Hatsukami, T.S., Ross, R., Polissar, N.L., Yuan, C.: Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 102 (2000) 959–964Google Scholar
  104. [104]
    Sonka, M., Thedens, D.R., Schulze-Bauer, C., Holzapfel, G., Stollberger, R., Bolinger, L., Wahle, A.: Towards MR assessment of plaque vulnerability: Image acquisition and segmentation. In: 10th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Berkeley, CA, ISMRM (2002) 1570Google Scholar
  105. [105]
    Brejl, M., Sonka, M.: Object localization and border detection criteria design in edge-based image segmentation: Automated learning from examples. IEEE Trans. Med. Imaging 19 (2000) 973–985Google Scholar
  106. [106]
    Holzapfel, G.A., Schulze-Bauer, C.A.J., Stadler, M.: Mechanics of angioplasty: Wall, balloon and stent. In: Mechanics in Biology. J Casey and G Bao (Eds.), New York, The American Society of Mechanical Engineers (ASME) (2000) AMD-Vol. 242/BED-Vol. 46, 141–156.Google Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Milan Sonka
    • 1
  • Daniel R. Thedens
    • 1
  • Boudewijn P. F. Lelieveldt
    • 2
  • Steven C. Mitchell
    • 1
  • Rob J. van der Geest
    • 2
  • Johan H. C. Reiber
    • 2
  1. 1.The University of IowaIowa CityUSA
  2. 2.Leiden University Medical CenterLeidenThe Netherlands

Personalised recommendations