Advertisement

Three-Dimensional Laser Radar Recognition Approaches

  • Gregory Arnold
  • Timothy J. Klausutis
  • Kirk Sturtz
Chapter
  • 869 Downloads
Part of the Advances in Pattern Recognition book series (ACVPR)

Summary

Three-dimensional laser radars measure the geometric shape of objects. The shape of an object is a geometric quality that is more intuitively understood than intensity-based sensors, and consequently laser radars are easier to interpret. While the shape contains more salient (and less variable) information, the computational difficulties are similar to those of other common sensor systems. A discussion of common approaches to 3D object recognition, and the technical issues (called operating conditions), are presented. A novel method that provides a straightforward approach to handling articulating object components and multiscale decomposition of complex objects is also presented. Invariants (or more precisely covariants) are a key element of this method. The presented approach is appealing since detection and segmentation processes need not be done beforehand, the object recognition system is robust to articulation and obscuration, and it is conducive to incorporating shape metrics.

Keywords

Point Cloud Object Recognition Range Image Focal Plane Array Point Correspondence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jelalian, A.V.: Laser Radar Systems. Artech House (1992)Google Scholar
  2. [2]
    Ross, T.D., Bradley, J.J., Hudson, L.J., O’Conner, M.P.: SAR ATR — so what’s the problem? — an MSTAR perspective. In Zelnio, E., ed.: Proceedings SPIE International Conf. Algorithms for Synthetic Aperture Radar Imagery VI, Bellingham, WA, SPIE—The International Society for Optical Engineering (1999)Google Scholar
  3. [3]
    Ray, M.: Model-based 3D Object Recognition using Invariants. PhD thesis, University of Maryland, College Park (2000)Google Scholar
  4. [4]
    Small, C.G.: The Statistical Theory of Shape. Springer-Verlag New York (1996)Google Scholar
  5. [5]
    Papadimitriou, C.H., Stieglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall (1982)Google Scholar
  6. [6]
    Ettinger, G.J., Klanderman, G.A., Wells, W.M., Grimson, W.E.L.: A probabilistic optimization approach to SAR feature matching. In Zelnio, E., Douglass, R., eds.: Proceedings SPIE International Conf. Volume 2757 of Algorithms for Synthetic Aperture Radar Imagery III., Bellingham, WA, SPIE—The International Society for Optical Engineering (1996) 318–329Google Scholar
  7. [7]
    Hung-Chih, C., Moses, R.L., Potter, L.C.: Model-based classification of radar images. IEEE Transactions on Information Theory 46 (2000) 1842–1854Google Scholar
  8. [8]
    van Wamelen, P.B., Li, Z., Iyengar, S.S.: A fast expected time algorithm for the 2D point pattern matching problem. see http://www.math.lsu.edu/~wamelen/publications.html (2002)Google Scholar
  9. [9]
    Maciel, J., Costeira, J.P.: A global solution to sparse correspondence problems. IEEE Transactions on PAMI 25 (2003) 187–199Google Scholar
  10. [10]
    Jones III, G., Bhanu, B.: Recognition of articulated and occluded objects. IEEE Transactions on PAMI 21 (1999) 603–613Google Scholar
  11. [11]
    Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3D object recognition from range images using local feature histograms. In: Proc. IEEE CVPR. Volume 2., Seattle, WA, IEEE Computer Society (2001) 394–399Google Scholar
  12. [12]
    Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques. Computer Vision and Image Understanding 81 (2001) 166–210CrossRefGoogle Scholar
  13. [13]
    Arman, F., Aggarwal, J.K.: Model-based object recognition in dense-range images: A review. ACM Computing Surveys 25 (1993) 5–43CrossRefGoogle Scholar
  14. [14]
    Bhanu, B., Ho, C.C.: CAD-based 3D object representation for robot vision. Computer 20 (1987) 19–35Google Scholar
  15. [15]
    Piegl, L.A., Tiller, W.: The Nurbs Book (Monograph in Visual Communications). 2nd edn. Springer-Verlag (1997)Google Scholar
  16. [16]
    Fan, T.J., Medioni, G., Nevatia, R.: Recognizing 3D objects using surface descriptions. IEEE Transactions on PAMI 11 (1989) 1140–1157Google Scholar
  17. [17]
    Solina, F., Bajcsy, R.: Recovery of parametric models from range images: The case for superquadrics with global deformations. IEEE Transactions on PAMI 12 (1990) 131–147Google Scholar
  18. [18]
    Binford, T.O., Levitt, T.S.: Quasi-invariants: Theory and exploitation. In Firschein, O., ed.: DARPA Image Understanding Workshop Proceedings, Washington DC, Morgan Kauffman (1993) 819–830Google Scholar
  19. [19]
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on PAMI 22 (2000) 4–37Google Scholar
  20. [20]
    Moses, Y., Ullman, S.: Limitations of non-model-based recognition schemes. A.I. Memo 1301, Massachusetts Institute of Technology (1991)Google Scholar
  21. [21]
    Jacobs, D.W., Alter, T.: Uncertainty progation in model-based recognition. A.I. Memo 1476, Massachusetts Institute of Technology (1994)Google Scholar
  22. [22]
    Basri, R., Weinshall, D.: Distance metric between 3D models and 2D images for recognition and classification. A.I. Memo 1373, Massachusetts Institute of Technology (1992)Google Scholar
  23. [23]
    Grimson, W.E.L., Huttenlocher, D.P., Jacobs, D.W.: Affine matching with bounded sensor error: A study of geometic hashing and alignment. A.I. Memo 1250, Massachusetts Institute of Technology (1991)Google Scholar
  24. [24]
    Stockman, G.: Object recognition and localization via pose clustering. Computer Vision Graphics Image Processing 40 (1987) 361–387Google Scholar
  25. [25]
    Huttenlocher, D.P., Ullman, S.: Object recognition using alignment. In: Proc. 1st Int. Conf. Computer Vision, Cambridge, MA, IEEE Computer Society (1987) 102–111Google Scholar
  26. [26]
    Rigoutsos, I., Hummel, R.: A bayesian approach to model matching with geometric hashing. Computer Vision and Image Understanding 62 (1995) 11–26CrossRefGoogle Scholar
  27. [27]
    Lamdan, Y., Schwartz, J.T., Wolfson, H.J.: Affine invariant model-based object recognition. IEEE Trans. on Robotics and Automation 6 (1990) 578–589CrossRefGoogle Scholar
  28. [28]
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing: Analysis and Machine Vision. 2nd edn. Brooks Cole (1998)Google Scholar
  29. [29]
    Binford, T., Levitt, T., Mann, W.: Bayesian inference in model-based vision. In Kanal, L., Levitt, T., Lemmer, J., eds.: Uncertainty in AI, 3, Elsevier (1989) 920–925Google Scholar
  30. [30]
    Hummel, R.A., Landy, M.S.: A statistical viewpoint on the theory of evidence. IEEE Transactions on PAMI 10 (1988) 235–247Google Scholar
  31. [31]
    Haykin, S.: Neural Networks: A Comprehensive Foundation. 2nd edn. Prentice-Hall (1999)Google Scholar
  32. [32]
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. 2nd edn. Wiley-Interscience (2001)Google Scholar
  33. [33]
    Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proc. IEEE CVPR, New York, IEEE, Computer Society (1991) 586–591Google Scholar
  34. [34]
    Pope, A.R., Lowe, D.G.: Probabilistic models of appearance for 3D object recognition. Int. Journal of Computer Vision 40 (2000) 149–167Google Scholar
  35. [35]
    Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley & Sons (1998)Google Scholar
  36. [36]
    Johnson, A.: Spin Images: A Representation for 3D Surface Matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1997)Google Scholar
  37. [37]
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Transactions on Graphics 22 (2003) 83–105CrossRefGoogle Scholar
  38. [38]
    Lo, C.H., Don, H.S.: 3D moment forms: Their construction and application to object identification and positioning. IEEE Transactions on PAMI 11 (1989) 1053–1064Google Scholar
  39. [39]
    Flusser, J., Boldyš, J., Zitová, B.: Moment forms invariant to rotation and blur in arbitrary number of dimensions. IEEE Transactions on PAMI 25 (2003) 234–246Google Scholar
  40. [40]
    Lele, S.R., Richtsmeier, J.T.: An Invariant Approach to Statistical Analysis of Shape. Chapman and Hall/CRC (2001)Google Scholar
  41. [41]
    Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society 16 (1984) 81–121zbMATHMathSciNetGoogle Scholar
  42. [42]
    Bookstein, F.L.: Size and shape spaces for landmark data in two dimensions (with discussion). Statistical Science 1 (1986) 181–242zbMATHGoogle Scholar
  43. [43]
    Arnold, G., Sturtz, K., Velten, V.: Similarity metrics for ATR. In: Proc. of Defense Applications of Signal Processing (DASP-01), Adelaide, AU, AFOSR (2001)Google Scholar
  44. [44]
    Mumford, D.: Mathematical theories of shape: Do they model perception? In Vemuri, B.C., ed.: Proceedings SPIE, Geometric Methods in Computer Vision. Volume 1570., Bellingham, WA, SPIE-The International Society for Optical Engineering (1991) 2–10Google Scholar
  45. [45]
    Csiszár, I.: Why least squares and maximum entropy? an axiomatic approach to inference for linear inverse problems. The Annals of Statistics 19 (1991) 2032–2066zbMATHMathSciNetGoogle Scholar
  46. [46]
    Santini, S., Jain, R.: Similarity measures. IEEE Transactions on PAMI 21 (1999) 871–883Google Scholar
  47. [47]
    Wallis, G., Rolls, E.T.: Invariant face and object recognition in the visual system. Progress in Neurobiology 51 (1997) 167–194CrossRefGoogle Scholar
  48. [48]
    Weisstein, E.W.: The CRC Concise Encyclopedia of Mathematics. 2nd edn. CRC Press (2002) see http://www.mathworld.com.Google Scholar
  49. [49]
    Arnold, G., Sturtz, K.: Complexity analysis of ATR algorithms based on invariants. In: Proceedings Computer Vision Beyond the Visible Spectrum (CVBVS), Hilton Head, SC, IEEE Computer Society (2000)Google Scholar
  50. [50]
    Zhang, X., Zhang, J., Walter, G.G., Krim, H.: Shape space object recognition. In Sadjadi, F., ed.: Proceedings SPIE International Conf. Volume 4379 of Automatic Target Recognition XI., Bellingham, WA, SPIE—The International Society for Optical Engineering (2001)Google Scholar
  51. [51]
    Levine, L., Arnold, G., Sturtz, K.: A label-invariant approach to procrustes analysis. In Zelnio, E., ed.: Proceedings SPIE International Conf. Volume 4727 of Algorithms for Synthetic Aperture Radar Imagery IX., Bellingham, WA, SPIE-The International Society for Optical Engineering (2002) 322–328Google Scholar
  52. [52]
    Weiss, I.: Model-based recognition of 3D objects from one view. In: Proc. DARPA Image Understanding Workshop, Monterey, CA, Morgan Kauffman (1998) 641–652Google Scholar
  53. [53]
    Weiss, I.: Noise-resistant invariants of curves. IEEE Transactions on PAMI 15 (1993) 943–948Google Scholar
  54. [54]
    Rivlin, E., Weiss, I.: Local invariants for recognition. IEEE Transactions on PAMI 17 (1995) 226–238Google Scholar
  55. [55]
    Stiller, P.F.: General approaches to recognizing geometric configurations from a single view. In: Proceedings SPIE International Conf., Vision Geometry VI. Volume 3168., Bellingham, WA, SPIE-The International Society for Optical Engineering (1997) 262–273Google Scholar
  56. [56]
    Stiller, P.F., Asmuth, C.A., Wan, C.S.: Single view recognition: The perspective case. In: Proceedings SPIE International Conf., Vision Geometry V. Volume 2826., Bellingham, WA, SPIE-The International Society for Optical Engineering (1996) 226–235Google Scholar
  57. [57]
    Stiller, P.F., Asmuth, C.A., Wan, C.S.: Invariants, indexing, and single view recognition. In: Proc. ARPA Image Understanding Workshop, Monterrey, CA (1994) 1432–1428Google Scholar
  58. [58]
    Stuff, M.A.: Three dimensional invariants of moving targets. In Zelnio, E., ed.: Proceedings SPIE International Conf. Algorithms for Synthetic Aperture Radar Imagery VII, Bellingham, WA, SPIE—The International Society for Optical Engineering (2000)Google Scholar
  59. [59]
    Stuff, M.A.: Three-dimensional analysis of moving target radar signals: Methods and implications for ATR and feature aided tracking. In Zelnio, E., ed.: Proceedings SPIE International Conf. Algorithms for Synthetic Aperture Radar Imagery VI, Bellingham, WA, SPIE-The International Society for Optical Engineering (1999)Google Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Gregory Arnold
    • 1
  • Timothy J. Klausutis
    • 2
  • Kirk Sturtz
    • 3
  1. 1.Air Force Research LabAFRL/SNATDayton
  2. 2.Air Force Research LabAFRL/MNGIEglin AFB
  3. 3.Veridian IncorporatedDayton

Personalised recommendations