Skip to main content
Book cover

Neurosurgery pp 301–314Cite as

Cerebral Blood Flow: Physiology and Measurement Techniques

  • Chapter

Part of the book series: Springer Specialist Surgery Series ((SPECIALIST))

Abstract

Cerebral blood flow (CBF) physiology is important to neurosurgeons who manage patients with cerebrovascular disease. The techniques to measure CBF and mathematical methods to calculate CBF have evolved over the past 50 years. These techniques have been refined to enable perioperative and intraoperative measurement of cerebral blood flow qualitatively and quantitatively. Some of the measurement techniques discussed in this chapter include PET, EEG, TCD, Xenon and thermal fusion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Khurana V, Besser M. Pathophysiological basis of cerebral vasospasm following aneurysmal subarachnoid haemorrhage. J Clin Neurosci 1997;4:122–31.

    Article  CAS  PubMed  Google Scholar 

  2. Mitchell H, Shonle HA, Grndley HS. The origin of nitrate in the urine. J Biol Chem 1916;24:461.

    CAS  Google Scholar 

  3. Furchgott R, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–6.

    Article  PubMed  CAS  Google Scholar 

  4. Ignarro L, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987;84:9265–9.

    Article  PubMed  CAS  Google Scholar 

  5. Palmer R, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–6.

    Article  PubMed  CAS  Google Scholar 

  6. Wiklund NP, Iversen HH, Leone AM, Cellek S, Brundin L, Gustafsson LE, Moncada S. Visualisation of nitric oxide released by nerve stimulation. J Neurosci Res 1997;47:224–32.

    Article  PubMed  CAS  Google Scholar 

  7. Bredt D, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 1990;347:768–70.

    Article  PubMed  CAS  Google Scholar 

  8. Pluta R, Thompson BG, Dawson TM, Snyder SH, Boock RJ, Oldfield EH. Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm. J Neurosurg 1996;84:648–54.

    Article  PubMed  CAS  Google Scholar 

  9. Faraci F, Brian JE. Nitric oxide and the cerebral circulation. Stroke 1994;25:692–703.

    PubMed  CAS  Google Scholar 

  10. Katusic Z. Endothelium-independent contractions to NG-monomethyl-L-arginine in canine basilar artery. Stroke 1991;22:1399–1404.

    PubMed  CAS  Google Scholar 

  11. Toda N, Okamura T. Nitroxidergic nerve: regulation of vascular tone and blood flow in the brain. J Hypertens 1996;14:423–34.

    Article  PubMed  CAS  Google Scholar 

  12. Chen A, O’Brien T, Katusic ZS. Transfer and expression of recombinant nitric oxide synthase genes in the cardiovascular system. Trends Pharmacol Sci 1998;19:276–86.

    Article  PubMed  CAS  Google Scholar 

  13. Khurana V, Smith LA, Wieler DA, Springett MJ, Parisi JE, Meyer FB et al. Adenovirus-mediated gene transfer to human cerebral arteries. J Cereb Blood Flow Metab 2000;20:1360–71.

    Article  PubMed  CAS  Google Scholar 

  14. Fog M. Cerebral circulation: the reaction of the pial arteries to a fall in blood pressure. Arch Neurol Psuch 1937;37:351–64.

    Google Scholar 

  15. Bayliss N. On the local reactions of the arterial wall to changes of internal pressure. J Physiol 1902;28:220–31.

    PubMed  CAS  Google Scholar 

  16. Davis M, Donovitz JA, Hood JD. Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol 1992;262:C1083–8.

    PubMed  CAS  Google Scholar 

  17. Nelson M, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995;268:C799–822.

    PubMed  CAS  Google Scholar 

  18. Yonas H, Pindzola RR, Johnson DW. Xenon/computed tomography cerebral blood flow and its use in clinical management. Neurosurgery Clinics of North America 1996;7:605–16.

    PubMed  CAS  Google Scholar 

  19. Brass L, Walovitch RC. Two prospective, blinded, controlled trials of Tc-99m bicisate brain SPECT and standard neurological evaluation for identifying and localizing ischemic strokes. Journal of Stroke and Cerebrovascular Diseases 1992;1:S59.

    Google Scholar 

  20. Grubb R, Derdeyn CP, Fritsch SM, Carpenter DA, Yundt KD, Videen TO et al. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA 1998;280:1055–60.

    Article  PubMed  Google Scholar 

  21. Charbel F, Gonzales-Portillo G, Hoffman WE et al. Quantitative assesment of vessel flow integrity for aneurysm surgery. J Neurosurg 1999;91:1050–4.

    Article  PubMed  CAS  Google Scholar 

  22. Anderson R. Cerebral blood flow: Xenon-133. Neurosurgery Clinics of North America 1996;7:703–8.

    PubMed  CAS  Google Scholar 

  23. Gibbs F. A thermoelectric blood flow recorder in the form of a needle. In Proceedings of the Society for Experimental Biology and Medicine. San Francisco, 1933, 141–6.

    Google Scholar 

  24. Brawley B. The pathophysiology of intracerebral steal following carbon dioxide inhalation, an experimental study. Scand J Clin Lab Invest 1968;22(Suppl.):XII.

    Google Scholar 

  25. Carter L, Weinland ME, Oommen KJ. Cerebral blood flow monitoring in intensive care by thermal diffusion. Acta Neurochir Supple 1993;59:43–6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Friedman, J.A., Khurana, V.G., Anderson, R.E., Meyer, F.B. (2005). Cerebral Blood Flow: Physiology and Measurement Techniques. In: Moore, A.J., Newell, D.W. (eds) Neurosurgery. Springer Specialist Surgery Series. Springer, London. https://doi.org/10.1007/1-84628-051-6_17

Download citation

  • DOI: https://doi.org/10.1007/1-84628-051-6_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-522-9

  • Online ISBN: 978-1-84628-051-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics