Skip to main content

Summary

Although numerous studies encompassing both the early and late forensic interval have been published throughout the international forensic community, little useable information can be applied to casework. Temperature-based analyses remain the most commonly used because they are less reliant upon subjective assessments of change, so use of such techniques continues to be recommended.

Numerous opportunities remain for continued work within the field of PMI estimations, either revisiting published work for evidence-based validation of findings or application of novel technology to the seemingly eternal problem of fulfilling the question frequently posed, not only by police officers but also by the Coroner during his/her investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. University of Dundee-Forensic Medicine. Available at: http://www.dundee.ac.uk/forensicmedicine/llb/timedeath.htm.

    Google Scholar 

  2. Dorries C. Coroner’s courts: a guide to law and practice. 2nd ed. Oxford: Oxford University Press.

    Google Scholar 

  3. Henssge C, Knight B, Krompecher T, Madea B, Nokes L. The estimation of the time since death in the early postmortem period. 2nd ed. London: Arnold Publishing, 2002.

    Google Scholar 

  4. Davey J. Researches, physiological and anatomical. In: Observations on the temperature of the human body after death. London: Smith, Elder and Company, 1839.

    Google Scholar 

  5. Rainy H. On the cooling of dead bodies as indicating the length of time since death. Glasg Med J 1868;1:323–330.

    Google Scholar 

  6. De Saram G, Webster G, Kathirgamatamby N. Post-mortem temperature and the time since death. J Crim Law Criminol 1955;1:562–577.

    Google Scholar 

  7. Al-Alousi LM, Anderson RA. Microwave thermography in forensic medicine. Police Surg 1986;30:30–42.

    Google Scholar 

  8. Al-Alousi LM, Anderson RA, Worster DM, Land DV. Multiple-probe thermography for estimating the postmortem interval: II. Practical versions of the Triple-Exponential Formulae (TEF) for estimating the time of death in the field. J Forensic Sci 2001;46:323–327.

    CAS  PubMed  Google Scholar 

  9. Al-Alousi LM, Anderson RA, Worster DM, Land DV. Factors influencing the precision of estimating the postmortem interval using the triple-exponential formulae (TEF). Part I. A study of the effects of body variables and covering of the torso on the postmortem brain, liver and rectal cooling rates in 117 forensic cases. Forensic Sci Int 2002;125:223–230.

    Article  PubMed  Google Scholar 

  10. Henssge C. Death time estimation in case work. I: the rectal temperature time of death nomogram. Forensic Sci Int 1988;38:209–236.

    Article  CAS  PubMed  Google Scholar 

  11. Rutty GN. The use of temperatures recorded from the external auditory canal in the estimation of the time since death. Medical Doctorate Thesis, University of Sheffield, 2001.

    Google Scholar 

  12. Baccino E, de Saint Martin L, Schuliar Y, et al. Outer ear temperature and time of death. Forensic Sci Int 1996;83:133–146.

    Article  CAS  PubMed  Google Scholar 

  13. Knight B. Forensic pathology. 2nd ed. London: Arnold Publishing, 1996.

    Google Scholar 

  14. Kobayashi M, Ikegaya H, Takase I, Hatanaka K, Sakurada K, Iwase H. Development of rigor mortis is not affected by muscle volume. Forensic Sci Int 2001;117:213–219.

    Article  CAS  PubMed  Google Scholar 

  15. Liao Z, Yi X, Zhang Y, Peng X, Li Q. Observations on rat’s muscle at various post-mortem intervals by scanning electron microscopy. Hua Xi Yi Ke Da Xue Xue Bao 1998;29:323–325.

    CAS  PubMed  Google Scholar 

  16. Wang X, Li M, Liao ZG, Yi XF, Peng XM. Experimental restiffening of rigor mortis. Fa Yi Xue Za Zhi 2001;17:202–204.

    CAS  PubMed  Google Scholar 

  17. Shapiro HA. Medico-legal mythology, some popular fallacies. J Forensic Med 1954;1:144–169.

    Google Scholar 

  18. Gordon I, Shapiro HA. Forensic medicine: a guide to principles. Edinburgh: Churchill Livingstone, 1975:14.

    Google Scholar 

  19. Kaatsch HJ, Schmidtke E, Nietsch W. Photometric measurement of pressure-induced blanching of livor mortis as an aid to estimating time of death. Application of a new system for quantifying pressure-induced blanching in lividity. Int J Legal Med 1994;106:209–214.

    Article  CAS  PubMed  Google Scholar 

  20. Bohnert M, Weinmann W, Pollak S. Spectrophotometric evaluation of post-mortem lividity. Forensic Sci Int 1999;99:149–158.

    Article  CAS  PubMed  Google Scholar 

  21. Vanezis P, Trujillo O. Evaluation of hypostasis using a colorimeter measuring system and its application to assessment of the post-mortem interval (time of death). Forensic Sci Int 1996; 78:19–28.

    Article  CAS  PubMed  Google Scholar 

  22. Mann RW, Bass WM, Meadows L. Time since death and decomposition of the human body: variables and observations in case and experimental field studies. J Forensic Sci 1990;35:103–111.

    CAS  PubMed  Google Scholar 

  23. Haglund WD. Recent mass graves, an introduction. In: Haglund WD, Sorg MH, editors. Advances in forensic taphonomy: method, theory and archaeological perspectives. Boca Raton, FL: CRC Press, 2002:243–261.

    Google Scholar 

  24. Galloway A. The process of decomposition: a model from the Arizona-Sonoran desert. In: Haglund WD, Sorg MH, editors. Forensic taphonomy: the post-mortem fate of human remains. Boca Raton, FL: CRC Press, 1997:139–150.

    Google Scholar 

  25. Schnabel A, Neis P, Bratzke H. Cycles of the uterus mucous membranes and estimation of time of death. Int J Legal Med 1997;110:31–32.

    CAS  PubMed  Google Scholar 

  26. Elmas I, Baslo B, Ertas M, Kaya M. Analysis of gastrocnemius compound muscle action potential in rat after death: significance for the estimation of early post-mortem interval. Forensic Sci Int 2001;116:125–132.

    Article  CAS  PubMed  Google Scholar 

  27. Querido D, Phillips MR. Estimation of postmortem interval. Temperature-correction of extracellular abdominal impedance during the first 21 days of death. Forensic Sci Int 2001;116:133–138.

    Article  CAS  PubMed  Google Scholar 

  28. Madea B. Gastric contents and time since death. In Henssge C, Knight B, Krompecher T, Madea B, Nokes L, editors. The estimation of the time since death in the early postmortem period. 2nd ed. London: Arnold Publishing, 2002:215–225.

    Google Scholar 

  29. Querido D. Double logarithmic, linear relationship between plasma sodium/potassium concentration ratio and postmortem interval during the 6-96h postmortem period in rats. Forensic Sci Int 1990;44:125–134.

    Article  CAS  PubMed  Google Scholar 

  30. Querido D. Linearization of the relationship between postmortem plasma chloride concentration and postmortem interval in rats. Forensic Sci Int 1990;45:117–128.

    Article  CAS  PubMed  Google Scholar 

  31. Querido D. In vitro loss of potassium from erythrocytes during the 0-108h postmortem period in rats: relationship between potassium loss and postmortem interval. Forensic Sci Int 1991; 51:111–123.

    Article  CAS  PubMed  Google Scholar 

  32. Singh D, Prashad R, Parkash C, Bansal YS, Sharma SK, Pandey AN. Linearization of the relationship between serum sodium, potassium concentration, their ratio and time since death in Chandigarh zone of north-west India. Forensic Sci Int 2002;130:1–7.

    Article  CAS  PubMed  Google Scholar 

  33. Singh D, Prashad R, Parkash C, Sharma SK, Pandey AN. Double logarithmic, linear relationship between plasma chloride concentration and time since death in humans in Chandigarh Zone of North-West India. Leg Med 2003;5:49–54.

    Article  CAS  Google Scholar 

  34. Dokgoz H, Arican N. Elmas I, Fincanci S. Comparison of morphological changes in white blood cells after death and in vitro storage of blood for the estimation of postmortem interval. Forensic Sci Int 2001;124:25–51.

    CAS  PubMed  Google Scholar 

  35. Gong ZQ, Xu XM, Zeng XB, Sun YG, Wand DW. Study on the relationship between PMI and the concentration of zinc and nickel in the vitreous humor of rabbit after death. Fa Yi Xue Za Zhi 2001;17:129–131.

    CAS  PubMed  Google Scholar 

  36. Munoz JI, Suarez-Penaranda JM, Otero XL, et al. A new perspective in the estimation of the postmortem interval (PMI) based on vitreous. J Forensic Sci 2001;46:209–214.

    CAS  PubMed  Google Scholar 

  37. Bocaz-Beneventi G, Tagliaro F, Bortolotti F, Manetto G, Havel J. Capillary zone electrophoresis and artificial neural networks for estimation of the post-mortem interval (PMI) using electrolytes measurements in human vitreous humour. Int J Legal Med 2002;116:5–11.

    Article  CAS  PubMed  Google Scholar 

  38. Tagliaro F, Bortolotti F, Manetto G, Cittadini F, Pascali VL, Marigo M. Potassium concentration differences in the vitreous humour from the two eyes revisited by microanalysis with capillary electrophoresis. J Chromatogr Anal 2001;924:493–498.

    CAS  Google Scholar 

  39. Madea B, Kreuser C, Banaschak S. Postmortem biochemical examination of synovial fluid: a preliminary study. Forensic Sci Int 2001;118:29–35.

    Article  CAS  PubMed  Google Scholar 

  40. Castellano MA, Villanueva EC, von Frenckel R. Estimating the date of bone remains: a multivariate study. J Forensic Sci 1984;29:527–534.

    CAS  PubMed  Google Scholar 

  41. Vass AA, Bass WM, Wolt JD, Foss JE, Ammons JT. Time since death determinations of human cadavers using soil solution. J Forensic Sci 1992;37:1236–1253.

    CAS  PubMed  Google Scholar 

  42. Vass AA, Barshick SA, Sega G, et al. Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J Forensic Sci 2002;47:542–553.

    CAS  PubMed  Google Scholar 

  43. Kang S, Kassam N, Gauthier ML, O’Day DH. Post-mortem changes in calmodulin binding proteins in muscle and lung. Forensic Sci Int 2003;131:140–147.

    Article  CAS  PubMed  Google Scholar 

  44. Sabucedo AJ, Furton KG. Estimation of the postmortem interval using the protein marker cardiac Troponin I. Forensic Sci Int 2003;134:11–16.

    Article  CAS  PubMed  Google Scholar 

  45. Wehner F, Wehner HD, Schieffer MC, Subke J. Delimitation of the time of death by immunohistochemical detection of thyroglobulin. Forensic Sci Int 2000;110:199–206.

    Article  CAS  PubMed  Google Scholar 

  46. Perry WL, Bass WM, Riggsby WS, Sirotkin K. The autodegradation of deoxyribonucleic acid (DNA) in human rib bone and its relationship to the time interval since death. J Forensic Sci 1988; 33:144–153.

    PubMed  Google Scholar 

  47. Boy SC, Bernitz H, van Heerden WF. Flow cytometric evaluation of postmortem pulp DNA degradation. Am J Forensic Med Pathol 2003;24:123–127.

    Article  PubMed  Google Scholar 

  48. Lin LQ, Liu L, Deng WN, Zhang L, Liu YL, Liu Y. An experimental study on the relationship between the estimation of early postmortem interval and DNA content of liver cells in rats by image analysis. Fa Yi Xue Za Zhi 2000;16:68–69, 127.

    PubMed  Google Scholar 

  49. Cina SJ. Flow cytometric evaluation of DNA degradation: a predictor of postmortem interval? Am J Forensic Med Pathol 1994;15:300–302.

    CAS  PubMed  Google Scholar 

  50. Liu L. An experimental study on the relationship between early postmortem intervals and DNA content of spleen cells in rats by computerized image analysis. Fa Yi Xue Za Zhi 2000;16:8–9, 63.

    CAS  PubMed  Google Scholar 

  51. Chen YC, Cheng JD. The relationship between postmortem degradation of bone marrow DNA in sternal bone and late postmortem interval estimation. Fa Yi Xue Za Zhi 2002;18:144–145.

    PubMed  Google Scholar 

  52. Inoue H, Kimura A, Tuji T. Degradation profile of mRNA in a dead rat body: basic semi-quantification study. Forensic Sci Int 2002;130:127–132.

    Article  CAS  PubMed  Google Scholar 

  53. Di Nunno N, Costantinides F, Cina SJ, Rizzardi C, Di Nunno C, Melato M. What is the best sample for determining the early postmortem period by on-the-spot flow cytometry analysis? Am J Forensic Med Pathol 2002;23:173–180.

    PubMed  Google Scholar 

  54. Sung T. The washing away of wrongs: forensic medicine in thirteenth-century China. University of Michigan Press, Ann Arbor, 1981.

    Google Scholar 

  55. Erzinçlioglu Z. Forensic entomology. Clin Med 2003;3:74–76.

    PubMed  Google Scholar 

  56. Anderson GS, Cervenka VJ. Insects associated with the body: their uses and analyses. In: Haglund WD, Sorg MH, editors: Advances in forensic taphonomy: method, theory and archaeological perspectives. Boca Raton, FL: CRC Press, 2002:174–200.

    Google Scholar 

  57. Liggett A, Swift B. Forensic webwatch: palynology, pedology and precipitation: environmental profiling in forensic science. J Clin Forensic Med 2003;10:49–51.

    Article  Google Scholar 

  58. Willey P, Heilman A. Estimating time since death using plant roots and stems. J Forensic Sci 1987; 32:1264–1270.

    Google Scholar 

  59. Swift B. Dating human skeletal remains: investigating the viability of measuring the equilibrium between polonium-210 and lead-210 as a means of estimating the post-mortem interval. Forensic Sci Int 1998;98:119–126.

    Article  CAS  PubMed  Google Scholar 

  60. Swift B, Lauder I, Black S, Norris J. An estimation of the post-mortem interval in human skeletal remains: a radionuclide and trace element approach. Forensic Sci Int 2001;117:73–87.

    Article  CAS  PubMed  Google Scholar 

  61. Haglund WD, Reay DT, Swindler DR. Canid scavenging/disarticulation sequence of human remains in the northwest Pacific. J Forensic Sci 1989;34:587–606.

    CAS  PubMed  Google Scholar 

  62. Pollard AM. Dating the time of death. In: Hunter J, Roberts C, Martin A, editors. Studies in crime: an introduction to forensic archaeology. London: B.T. Batsford Publishers, 1996:139–155.

    Google Scholar 

  63. Berg S, Specht W. Untersuchungen zur Bestimmung der Liegezeit von Skeletteilen. Dtsch Z Gerichtl Med 1958;47:209–241.

    Article  CAS  Google Scholar 

  64. Nokes LDM, Green M, Knight B. The use of scanning electron microscopy in the dating of human skeletal remains. Forensic Sci Soc 1987;27:413–416.

    CAS  Google Scholar 

  65. Yoshino M, Kimijima T, Miyasaka S, Sato H, Seta S. Microscopical study on estimation of time since death in skeletal remains. Forensic Sci Int 1991;49:143–158.

    Article  CAS  PubMed  Google Scholar 

  66. Berg S. The determination of bone age. Methods Forensic Sci 1963;2:231–252.

    CAS  Google Scholar 

  67. Knight B, Lauder I. Practical methods of dating skeletal remains: a preliminary study. Med Sci Law 1967;7:205–209.

    CAS  PubMed  Google Scholar 

  68. Knight B, Lauder I. Methods of dating skeletal remains. Hum Biol 1969;41:322–341.

    CAS  PubMed  Google Scholar 

  69. Knight B. Methods of dating skeletal remains. Med Sci Law 1969;9:247–252.

    CAS  PubMed  Google Scholar 

  70. Schoeninger MJ, Moore KM, Murray ML, Kingston JD. Detection of bone preservation in archaeological and fossil bone. Appl Geochem 1988;4:281–292.

    Google Scholar 

  71. von Endt DW. Protein hydrolysis and amino acid racemization in sized bone. In: Hare PE, Hoering TC, King K, editors: Biogeochemistry of amino acids. New York: John Wiley, 1980:297–304.

    Google Scholar 

  72. Mays S. The archaeology of human bones. London: Taylor and Francis Books, 1998.

    Google Scholar 

  73. Hare PE. Organic geochemistry of bone and its relation to the survival of bone in the natural environment. In: Behrensmeyer AK, Hill AP, editors. Fossils in the making. Chicago: University of Chicago Press, 1980:208–219.

    Google Scholar 

  74. Facchini F, Pettener D. Chemical and physical methods in dating human skeletal remains. Am J Phys Anthropol 1977;47:65–70.

    Article  CAS  PubMed  Google Scholar 

  75. McLean FC, Urist MR. Bone: fundamentals of the physiology of skeletal tissue. 3rd ed. Chicago: University of Chicago Press, 1968.

    Google Scholar 

  76. Introna F, Di Vella G, Campobasso CP. Determination of postmortem interval from old skeletal remains by image analysis of luminol test results. J Forensic Sci 1999;44:535–538.

    CAS  PubMed  Google Scholar 

  77. Haglund WD, Sorg MH. Forensic taphonomy: the post-mortem fate of human remains. Boca Raton, FL: CRC Press, 1997.

    Google Scholar 

  78. Libby WF, Anderson EC, Arnold JR. Age determination by radiocarbon content: worldwide assay of natural radiocarbon. Science 1949;109:227–228.

    CAS  Google Scholar 

  79. Taylor RE. Radiocarbon dating. Orlando, FL: Academic Press, 1987.

    Google Scholar 

  80. Wild EM, Arlamovsky KA, Golser R, et al. 14C dating with the bomb peak: an application to forensic medicine. Nucl Instrum Methods Phys Res B 2000;172:944–950.

    Article  CAS  Google Scholar 

  81. Taylor RE, Suchery JM, Payen CA, Slota PJ Jr. The use of radiocarbon (C-14) to identify skeletal materials of forensic science interest. J Forensic Sci 1989;34:1196–1205.

    CAS  PubMed  Google Scholar 

  82. Geyh MA. Bomb radiocarbon dating of animal tissues and hair. Radiocarbon 2001;43:723–730.

    CAS  Google Scholar 

  83. Ubelaker DH. Artificial radiocarbon as an indicator of recent origin of organic remains in forensic cases. J Forensic Sci 2001;46:1285–1287.

    CAS  PubMed  Google Scholar 

  84. “Age differences and population variation in stable istope values from Ontario, Canada.” In: Prehistoric Human Bone: Archaeology at the molecular level. Lambert J, Grupe G. Springer-Verlag: Berlin, 1993:39–62.

    Google Scholar 

  85. MacLaughlin-Black SM, Herd RJM, Willson K, Myers M, West IE. Strontium-90 as an indicator of time since death: a pilot investigation. Forensic Sci Int 1992;57:51–56.

    Article  CAS  PubMed  Google Scholar 

  86. Parker A, Henderson EH, Spicer GS. Analytical methods for the determination of radiostrontium in biological materials. AERE AM 1965:101.

    Google Scholar 

  87. Neis P, Hille R, Paschke M, et al. Strontium-90 for determination of time since death. Forensic Sci Int 1999;99:47–51.

    Article  CAS  PubMed  Google Scholar 

  88. Smith KR, Crockett GM, Oatway WB, Harvey MP, Penfold JSS, Mobbs SF. Radiological impact on the UK population of industries which use or produce materials containing enhanced levels of naturally occurring radionuclides: part I: coal-fired electricity generation. NRPB-R327. National Radiological Protection Board, 2001.

    Google Scholar 

  89. Flues M, Moraes V, Mazzilli BP. The influence of a coal-fired power plant operation on radionuclide concentrations in soil. J Environ Radioact 2002;2002:285–294.

    Google Scholar 

  90. Vuković Ž, Mandić M. Natural radioactivity of ground waters and soil in the vicinity of the ash repository of the coal-fired power plant “Nikola Tesla” A — Obrenovac (Yugoslavia). J Environ Radioact 1996;33:41–48.

    Google Scholar 

  91. Swift B. The use of radioisotopes in forensic science: the development of the “isotope fingerprint” analysis. Doctorate of Medicine Thesis, University of Leicester, 2004.

    Google Scholar 

  92. Gelen A, Díaz O, Simón MJ, et al. 210Pb dating of sediments from Havana Bay. J Radioanal Nucl Chem 2003;256:561–564.

    Article  CAS  Google Scholar 

  93. Aitken MJ. Science based dating in archaeology. Longman Publishing Group: New York, 1990.

    Google Scholar 

  94. Keisch B. Dating works of art through their natural radioactivity: improvements and applications. Science 1968;160:413–415.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Swift, B. (2006). The Timing of Death. In: Rutty, G.N. (eds) Essentials of Autopsy Practice. Springer, London. https://doi.org/10.1007/1-84628-026-5_8

Download citation

  • DOI: https://doi.org/10.1007/1-84628-026-5_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-967-8

  • Online ISBN: 978-1-84628-026-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics