Skip to main content

Familial Prostate Cancer

  • Chapter
Urological Cancers

Conclusion

Prostate cancer is one of the common cancers where there is good evidence for a larger genetic component to its etiology, but the genetic models are complex. It is highly likely that the PCa predisposition genes will be polygenic and may be interacting within families. Some PCa predisposition genes are likely to be DNA repair genes (e.g., BRCA2) but these may account for only a small proportion of young cases. However, the discovery of high-risk BRCA2 mutations has led to the first clinical targeted screening trial based on genotype in this disease (the IMPACT study, discussed above), and this trial will serve as a basis for further targeted screening and chemoprevention trials based on genotype as further genes are identified. The lessons learned in IMPACT will be screening uptake in a high-risk male population, the psychological issues of screening men at higher risk of PCa, the utility of PSA in a higher risk population, the identification of new and better biomarkers and the clinical parameters of PCa so identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Cancer Society. Cancer Facts and Figures 2004. Atlanta: American Cancer Society, 2004.

    Google Scholar 

  2. AIHW and AACR. AIHW National Mortality Database, Australia’s Health 2004, AIHW.

    Google Scholar 

  3. Majeed A, Babb P, Jones J, Quinn M. Trends in prostate cancer incidence, mortality and survival in England and Wales 1971–1998. BJU Int 2000;85(9):1058–1062.

    PubMed  CAS  Google Scholar 

  4. Dijkman GA, Debruyne FM. Epidemiology of prostate cancer. Eur Urol 1996;30(3):281–295.

    PubMed  CAS  Google Scholar 

  5. Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 1993;54(4):594–606.

    PubMed  CAS  Google Scholar 

  6. Whittemore AS, Wu AH, Kolonel LN, et al. Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am J Epidemiol 1995;141(8):732–740.

    PubMed  CAS  Google Scholar 

  7. Cussenot O, Cancel-Tassin G. Genetic susceptibility to prostate cancer. Med Sci (Paris) 2004;20(5):562–568 (French).

    Google Scholar 

  8. Morganti G, et al. Recherches clinico-statistiques et génétiques sur les néopasies de la prostate. Acta Genet Statist 1959;6:304–305.

    Google Scholar 

  9. Smith JR, Freije D, Carpten JD, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996;274(5291):1371–1374.

    PubMed  CAS  Google Scholar 

  10. Eeles RA, the UK Familial Prostate Study Coordinating Group and the CRC/BPG UK Familial Prostate Cancer Study Collaborators. Genetic predisposition to prostate cancer. Prostate Cancer Prostatic Dis 1999;2(1):9–15.

    PubMed  Google Scholar 

  11. Ostrander EA, Stanford JL. Genetics of prostate cancer: too many loci, too few genes. Am J Hum Genet 2000;67(6):1367–1375.

    PubMed  CAS  Google Scholar 

  12. Simard J, Dumont M, Labuda D, et al. Prostate cancer susceptibility genes: lessons learned and challenges posed. Endocr Relat Cancer 2003;10(2):225–259.

    PubMed  CAS  Google Scholar 

  13. Easton DF, Schaid DJ, Whittemore AS, Isaacs WJ. International Consortium for Prostate Cancer Genetics. Where are the prostate cancer genes? A summary of eight genome wide searches. Prostate 2003;57(4):261–269.

    PubMed  CAS  Google Scholar 

  14. Hall JM, Lee MK, Newman B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990;250(4988):1684–1689.

    PubMed  CAS  Google Scholar 

  15. Morganti G, Gianferrari L, Cresseri A, Arrigoni G, Lovati G. [Clinico-statistical and genetic research on neoplasms of the prostate]. Acta Genet Stat Med 1956–1957;6(2):304–305.

    PubMed  Google Scholar 

  16. Woolf CM. An investigation of the familial aspects of carcinoma of the prostate. Cancer 1960;13:739–744.

    PubMed  CAS  Google Scholar 

  17. Cannon L, Bishop DT, Skolnick M, Hunt S, Lyon JL, Smart CR. Genetic epidemiology of prostate cancer in the Utah Mormon Genealogy. Cancer Surv 1982;1:47–69.

    Google Scholar 

  18. Cannon-Albright L, Eeles RA. Progress in prostate cancer. Nat Genet 1995;9(4):336–338.

    PubMed  CAS  Google Scholar 

  19. Steele R, Lees RE, Kraus AS, Rao C. Sexual factors in the epidemiology of cancer of the prostate. J Chronic Dis 1971;24(1):29–37.

    PubMed  CAS  Google Scholar 

  20. Krain LS. Some epidemiologic variables in prostatic carcinoma in California. Prev Med 1974;3(1):154–159.

    PubMed  CAS  Google Scholar 

  21. Schuman LM, Mandel J, Blackard C, Bauer H, Scarlett J, McHugh R. Epidemiologic study of prostatic cancer: preliminary report. Cancer Treat Rep 1977;61(2):181–186.

    PubMed  CAS  Google Scholar 

  22. Meikle AW, Smith JA, West DW. Familial factors affecting prostatic cancer risk and plasma sex-steroid levels. Prostate 1985;6(2):121–128.

    PubMed  CAS  Google Scholar 

  23. Steinberg GD, Carter BS, Beaty TH, Childs B, Walsh PC. Family history and the risk of prostate cancer. Prostate 1990;17(4):337–347.

    PubMed  CAS  Google Scholar 

  24. Fincham SM, Hill GB, Hanson J, Wijayasinghe C. Epidemiology of prostatic cancer: a case-control study. Prostate 1990;17(3):189–206.

    PubMed  CAS  Google Scholar 

  25. Spitz MR, Currier RD, Fueger JJ, Babaian RJ, Newell GR. Familial patterns of prostate cancer: a case-control analysis. J Urol 1991;146(5):1305–1307.

    PubMed  CAS  Google Scholar 

  26. Ghadirian P, Cadotte M, Lacroix A, Perret C. Family aggregation of cancer of the prostate in Quebec: the tip of the iceberg. Prostate 1991;19(1):43–52.

    PubMed  CAS  Google Scholar 

  27. Whittemore AS, Wu AH, Kolonel LN, et al. Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am J Epidemiol 1995;141(8):732–740.

    PubMed  CAS  Google Scholar 

  28. Hayes RB, Liff JM, Pottern LM, et al. Prostate cancer risk in U.S. blacks and whites with a family history of cancer. Int J Cancer 1995;60(3):361–364.

    PubMed  CAS  Google Scholar 

  29. Isaacs SD, Kiemeney LA, Baffoe-Bonnie A, Beaty TH, Walsh PC. Risk of cancer in relatives of prostate cancer probands. J Natl Cancer Inst 1995;87(13):991–996.

    PubMed  CAS  Google Scholar 

  30. Keetch DW, Rice JP, Suarez BK, Catalona WJ. Familial aspects of prostate cancer: a case control study. J Urol 1995;154(6):2100–2102.

    PubMed  CAS  Google Scholar 

  31. Lesko SM, Rosenberg L, Shapiro S. Family history and prostate cancer risk. Am J Epidemiol 1996;144(11):1041–1047.

    PubMed  CAS  Google Scholar 

  32. Ghadirian P, Howe GR, Hislop TG, Maisonneuve P. Family history of prostate cancer: a multicenter case-control study in Canada. Int J Cancer 1997;70(6):679–681.

    PubMed  CAS  Google Scholar 

  33. Glover FE Jr, Coffey DS, Douglas LL, et al. Familial study of prostate cancer in Jamaica. Urology 1998;52(3):441–443.

    PubMed  Google Scholar 

  34. Bratt O, Kristoffersson U, Lundgren R, Olsson H. Familial and hereditary prostate cancer in southern Sweden. A population-based case-control study. Eur J Cancer 1999;35(2):272–277.

    PubMed  CAS  Google Scholar 

  35. Eeles RA, Dearnaley DP, Ardern-Jones A, et al. Familial prostate cancer: the evidence and the Cancer Research Campaign/British Prostate Group (CRC/BPG) UK Familial Prostate Cancer Study. Br J Urol 1997;79(suppl 1):8–14.

    PubMed  Google Scholar 

  36. Singh R, Eeles RA, Durocher F, et al. High risk genes predisposing to prostate cancer development-do they exist? Prostate Cancer Prostatic Dis 2000;3(4):241–247.

    PubMed  Google Scholar 

  37. Johns LE, Houlston RS. A systematic review and meta-analysis of familial prostate cancer risk. BJU Int 2003;91(9):789–794.

    PubMed  CAS  Google Scholar 

  38. Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci USA 1992;89(8):3367–3371.

    PubMed  CAS  Google Scholar 

  39. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 1994;86(21):1600–1608.

    PubMed  CAS  Google Scholar 

  40. Gronberg H, Damber L, Damber JE. Familial prostate cancer in Sweden. A nationwide register cohort study. Cancer 1996;77(1):138–143.

    PubMed  CAS  Google Scholar 

  41. Ahlbom A, Lichtenstein P, Malmstrom H, Feychting M, Hemminki K, Pedersen NL. Cancer in twins: genetic and nongenetic familial risk factors. J Natl Cancer Inst 1997;89(4):287–293.

    PubMed  CAS  Google Scholar 

  42. Page WF, Braun MM, Partin AW, Caporaso N, Walsh P. Heredity and prostate cancer: a study of World War II veteran twins. Prostate 1997;33(4):240–245.

    PubMed  CAS  Google Scholar 

  43. Verkasalo PK, Kaprio J, Koskenvuo M, Pukkala E. Genetic predisposition, environment and cancer incidence: a nationwide twin study in Finland, 1976–1995. Int J Cancer 1999;83(6):743–749.

    PubMed  CAS  Google Scholar 

  44. Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000;343(2):78–85.

    PubMed  CAS  Google Scholar 

  45. Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN. Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 1998;62(6):1425–1438.

    PubMed  CAS  Google Scholar 

  46. Narod SA, Dupont A, Cusan L, et al. The impact of family history on early detection of prostate cancer. Nat Med 1995;1(2):99–101.

    PubMed  CAS  Google Scholar 

  47. Monroe KR, Yu MC, Kolonel LN, et al. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med 1995;1(8):827–829.

    PubMed  CAS  Google Scholar 

  48. Ewis AA, Lee J, Naroda T, et al. Linkage between prostate cancer incidence and different alleles of the human Y-linked tetranucleotide polymorphism DYS19. J Med Invest 2002;49(1–2):56–60.

    PubMed  Google Scholar 

  49. Cui J, Staples MP, Hopper JL, English DR, McCredie MR, Giles GG. Segregation analyses of 1,476 population-based Australian families affected by prostate cancer. Am J Hum Genet 2001;68(5):1207–1218.

    PubMed  CAS  Google Scholar 

  50. Conlon EM, Goode EL, Gibbs M, et al. Oligogenic segregation analysis of hereditary prostate cancer pedigrees: evidence for multiple loci affecting age at onset. Int J Cancer 2003;105(5):630–635.

    PubMed  CAS  Google Scholar 

  51. Eeles RAPB, Easton DF, Ponder BAJ, Eng C, eds. Genetic Predisposition to Cancer, 2nd ed. London: Arnold, 2004.

    Google Scholar 

  52. Tulinius H, Olafsdottir GH, Sigvaldason H, Tryggvadottir L, Bjarnadottir K. Neoplastic diseases in families of breast cancer patients. J Med Genet 1994;31(8):618–621.

    Article  PubMed  CAS  Google Scholar 

  53. Anderson DE, Badzioch MD. Familial breast cancer risks. Effects of prostate and other cancers. Cancer 72:114–119.

    Google Scholar 

  54. Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 1994;343:692–695.

    PubMed  CAS  Google Scholar 

  55. Thompson D, Easton DF, and the Breast Cancer Linkage Consortium. Cancer Incidence in BRCA1 Mutation Carriers. J Natl Cancer Inst 94:1358–1365.

    Google Scholar 

  56. Thorlacius S, Struewing JP, Hartge P, et al. Population-based study of risk of breast cancer in carriers of BRCA2 mutation. Lancet 1998;352:1337–1339.

    PubMed  CAS  Google Scholar 

  57. Sigurdsson S, Thorlacius S, Tomasson J, et al. BRCA2 mutation in Icelandic prostate cancer patients. J Mol Med 1997;75:758–761.

    PubMed  CAS  Google Scholar 

  58. Gronberg H, Ahman AK, Emanuelsson M, Bergh A, Damber JE, Borg A. BRCA2 mutation in a family with hereditary prostate cancer. Genes Chromosomes Cancer 2001;30:299–301.

    PubMed  CAS  Google Scholar 

  59. Gayther SA, de Foy KA, Harrington P, et al. The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators. Cancer Res 2000;60:4513–4518.

    PubMed  CAS  Google Scholar 

  60. Edwards SM, Kote-Jarai Z, Meitz J, et al. Cancer Research UK/British Prostate Group UK Familial Prostate Cancer Study Collaborators, British Association of Urological Surgeons Section of Oncology. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 2003;72(1):1–12.

    PubMed  CAS  Google Scholar 

  61. Kirchhoff T, Kauff ND, Mitra N, et al. BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res 2004;10(9):2918–2921.

    PubMed  CAS  Google Scholar 

  62. Giusti RM, Rutter JL, Duray PH, et al. A twofold increase in BRCA mutation related prostate cancer among Ashkenazi Israelis is not associated with distinctive histopathology. J Med Genet 2003;40(10):787–792.

    PubMed  CAS  Google Scholar 

  63. Cybulski C, Gorski B, Debniak T, et al. NBS1 is a prostate cancer susceptibility gene. Cancer Res 2004;64(4):1215–1219.

    PubMed  CAS  Google Scholar 

  64. Dong X, Wang L, Taniguchi K, et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet 2003;72(2):270–280.

    PubMed  CAS  Google Scholar 

  65. Berthon P, Valerie A, Cohen-Akenine A, et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2–43. Am J Hum Genet 1998;62(6):1416–1424.

    PubMed  CAS  Google Scholar 

  66. Suarez BK, Lin J, Burmester JK, et al. A genome screen of multiplex sibships with prostate cancer. 66(3):933–944.

    Google Scholar 

  67. Gibbs M, Stanford JL, McIndoe RA, et al. Evidence for a rare prostate cancer prostate cancer-susceptibility locus at chromosome 1p36. Hum Genet 1999;64(3):776–787.

    CAS  Google Scholar 

  68. Berry R, Schaid DJ, Smith JR, et al. Linkage analyses at the chromosome 1 loci 1q24–25 (HPC1), 1q42.2–43 (PCAP), and 1p36 (CAPB) in families with hereditary prostate cancer. Am J Hum Genet 2000;66(2):539–546.

    PubMed  CAS  Google Scholar 

  69. Tavtigian SV, Simrad J, Teng DH, et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001;27(2):172–180.

    PubMed  CAS  Google Scholar 

  70. Hsieh CL, Oakley-Girvan I, Gallagher RP, et al. Re: prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 1997;89(24):1893–1894.

    PubMed  CAS  Google Scholar 

  71. Berry R, Schroeder JJ, French AJ, et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet 2000;67(1):82–91.

    PubMed  CAS  Google Scholar 

  72. Goode EL, Stanford JL, Chakrabarti L, et al. Linkage analysis of 150 high-risk prostate cancer families at 1q24–25. Genet Epidemiol 2000;18(3):251–275.

    PubMed  CAS  Google Scholar 

  73. Lange EM, Gillanders EM, Davis CC, et al. Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 2003;57(4):326–334.

    PubMed  CAS  Google Scholar 

  74. Schleutker J, Baffoe-Bonnie AB, et al. Genome-wide scan for linkage in Finnish Hereditary Prostate Cancer (HPC) families identifies novel susceptibility loci at 11q14 and 3p25–26. Prostate 2003;57(4):280–289.

    PubMed  CAS  Google Scholar 

  75. Cunningham JM, McDonnell SK, Marks A, et al. Mayo Clinic, Rochester, Minnesota. Genome linkage screen for prostate cancer susceptibility loci: results from the Mayo Clinic Familial Prostate Cancer Study. Prostate 2003;57(4):335–346.

    PubMed  CAS  Google Scholar 

  76. Xu J, Gillanders EM, Isaacs SD, et al. Genome-wide scan for prostate cancer susceptibility genes in the Johns Hopkins hereditary prostate cancer families. Prostate 2003;57(4):320–325.

    PubMed  CAS  Google Scholar 

  77. Wiklund F, Gillanders EM, Albertus JA, et al. Genome-wide scan of Swedish families with hereditary prostate cancer: suggestive evidence of linkage at 5q11.2 and 19p13.3. Prostate 2003;57(4):290–297.

    PubMed  CAS  Google Scholar 

  78. Janer MFD, Stanford JL, Badzioch MD, et al. Genomic scan of 254 hereditary prostate cancer families. Prostate 2003;57(4):309–319.

    PubMed  CAS  Google Scholar 

  79. Witte JSSB, Thiel B, Lin J, et al. Genome-wide scan of brothers: replication and fine mapping of prostate cancer susceptibility and aggressiveness loci. Prostate 2003;57(4):298–308.

    PubMed  CAS  Google Scholar 

  80. The International ACTANE Consortium. Results of a genome-wide linkage analysis in prostate cancer families ascertained through the ACTANE consortium. Prostate 2003;57(4):270–279.

    Google Scholar 

  81. Gronberg H, Smith J, Emanuelsson M, et al. In Swedish families with hereditary prostate cancer, linkage to the HPC1 locus on chromosome 1q24–25 is restricted to families with early-onset prostate cancer. Am J Hum Genet 1999;65(1):134–140.

    PubMed  CAS  Google Scholar 

  82. Cooney KA, McCarthy JD, Lange E, et al. Prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 1997;89(13):955–959.

    PubMed  CAS  Google Scholar 

  83. Neuhausen SL, Farnham JH, Kort E, Tavtigian SV, Skolnick MH, Cannon-Albright LA. Prostate cancer susceptibility locus HPC1 in Utah high-risk pedigrees. Hum Mol Genet 1999;8(13):2437–2442.

    PubMed  CAS  Google Scholar 

  84. Xu J, Zheng SL, Chang B, et al. Linkage of prostate cancer susceptibility loci to chromosome 1. Hum Genet 2001;108(4):335–345.

    PubMed  CAS  Google Scholar 

  85. McIndoe RA, Stanford JL, Gibbs M, et al. Linkage analysis of 49 high-risk families does not support a common familial prostate cancer-susceptibility gene at 1q24–25. Am J Hum Genet 1997;61(2):347–353.

    PubMed  CAS  Google Scholar 

  86. Eeles RA, Durocher F, Edwards S, et al. Linkage analysis of chromosome 1q markers in 136 prostate cancer families. The Cancer Research Campaign/British Prostate Group U.K. Familial Prostate Cancer Study Collaborators. Am J Hum Genet 1998;62(3):653–658.

    PubMed  CAS  Google Scholar 

  87. Goddard KA, Witte JS, Suarez BK, Catalona WJ, Olson JM. Model-free linkage analysis with covariates confirms linkage of prostate cancer to chromosomes 1 and 4. Am J Hum Genet 2001;68(5):1197–1206.

    PubMed  CAS  Google Scholar 

  88. Xu J. Combined analysis of hereditary prostate cancer linkage to 1q24–25: results from 772 hereditary prostate cancer families from the International Consortium for Prostate Cancer Genetics. Am J Hum Genet 2000;66(3):945–957; erratum in Am J Hum Genet 2000;67(2):541–542.

    PubMed  CAS  Google Scholar 

  89. Carpten J, Nupponen N, Isaacs S, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 2002;30(2):181–184.

    PubMed  CAS  Google Scholar 

  90. Rokman A, Ikonen T, Seppala EH, et al. Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 2002;70(5):1299–1304; erratum in Am J Hum Genet 2002;71(1):215.

    PubMed  CAS  Google Scholar 

  91. Casey G, Neville PJ, Plummer SJ, et al. RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet 2002;32(4):581–583.

    PubMed  CAS  Google Scholar 

  92. Chen H, Griffen AR, Wu YQ, et al. RNASEL mutations in hereditary prostate cancer. J Med Genet 2003;40(3):e21.

    PubMed  CAS  Google Scholar 

  93. Wang L, McDonnel SK, Cunningham JM, et al. No association of germline alteration of MSR1 with prostate cancer risk. Nat Genet 2003;35(2):128–129.

    PubMed  CAS  Google Scholar 

  94. Meitz JC, Edwards SM, Easton DF, et al. Cancer Research UK/BPG UK Familial Prostate Cancer Study Collaborators. HPC2/ELAC2 polymorphisms and prostate cancer risk: analysis by age of onset of disease. Br J Cancer 2002;87(8):905–908.

    PubMed  CAS  Google Scholar 

  95. Badzioch M, Eeles R, Leblanc G, et al. Suggestive evidence for a site specific prostate cancer gene on chromosome 1p36. The CRC/BPG UK Familial Prostate Cancer Study Coordinators and Collaborators. The EU Biomed Collaborators. J Med Genet 2000;37(12):947–949.

    PubMed  CAS  Google Scholar 

  96. Xu J, Meyers D, Freije D, et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 1998;20(2):175–179.

    PubMed  CAS  Google Scholar 

  97. Witte JS, Goddard KA, Conti DV, et al. Genomewide scan for prostate cancer-aggressiveness loci. Am J Hum Genet 2000;67(1):92–99.

    PubMed  CAS  Google Scholar 

  98. Slager SL, Schaid DJ, Cunningham JM, et al. Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am J Hum Genet 2003;72(3):759–762.

    PubMed  CAS  Google Scholar 

  99. Neville PJ, Conti DV, Krumroy LM, et al. Prostate cancer aggressiveness locus on chromosome segment 19q12–q13.1 identified by linkage and allelic imbalance studies. Genes Chromosomes Cancer 2003;36(4):332–339.

    PubMed  CAS  Google Scholar 

  100. Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995;55:1937–1940.

    PubMed  CAS  Google Scholar 

  101. Hardy DO, Scher HI, Bogenreider T, et al. Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J Clin Endocrinol Metab 1996;81:4400–4405.

    PubMed  CAS  Google Scholar 

  102. Ingles SA, Ross RK, Yu MC, et al. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997;89:166–170.

    PubMed  CAS  Google Scholar 

  103. Stanford JL, Just JJ, Gibbs M, et al. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res 1997;57:1194–1198.

    PubMed  CAS  Google Scholar 

  104. Giovannucci E, Stampfer MJ, Krithivas K, et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997;94:3320–3323.

    PubMed  CAS  Google Scholar 

  105. Hakimi JM, Schoenberg MP, Rondinelli RH, Piantadosi S, Barrack ER. Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer. Clin Cancer Res 1997;3:1599–1608.

    PubMed  CAS  Google Scholar 

  106. Miller EA, Stanford JL, Hsu L, Noonan E, Ostrander EA. Polymorphic repeats in the androgen receptor gene in high-risk sibships. Prostate 2001;48:200–205.

    PubMed  CAS  Google Scholar 

  107. Hsing AW, Gao YT, Wu G, et al. Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res 2000;60:5111–5116.

    PubMed  CAS  Google Scholar 

  108. Edwards SM, Badzioch MD, Minter R, et al. Androgen receptor polymorphisms: association with prostate cancer risk, relapse and overall survival. Int J Cancer 1999;84:458–465.

    PubMed  CAS  Google Scholar 

  109. Makridakis NM, Ross RK, Pike MC, et al. Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 1999;354:975–978.

    PubMed  CAS  Google Scholar 

  110. Kote-Jarai Z, Easton D, Edwards SM, et al. CRC/BPG UK Familial Prostate Cancer Study Collaborators. Relationship between glutathione S-transferase M1, P1 and T1 polymorphisms and early onset prostate cancer. Pharmacogenetics 2001;11:325–330.

    PubMed  CAS  Google Scholar 

  111. Walsh PC. Hereditary Prostate Cancer, podium talk at the annual meeting of the American Society of Clinical Oncology, 1996.

    Google Scholar 

  112. Kupelian PA, Kupelian VA, Witte JS, Macklis R, Klein EA. Family history of prostate cancer in patients with localized prostate cancer: an independent predictor of treatment outcome. J Clin Oncol 1997;15(4):1478–1480.

    PubMed  CAS  Google Scholar 

  113. Valeri A, Azzouzi R, Drelon E, et al. Early-onset hereditary prostate cancer is not associated with clinical and biological features. Prostate 2000;45(1):66–71.

    PubMed  CAS  Google Scholar 

  114. Klein EA, Kupelian PA, Witte JS. Does a family history of prostate cancer result in more aggressive disease? Prostate Cancer Prostatic Dis 1998;1(6):297–300.

    PubMed  Google Scholar 

  115. Bova GS, Partin AW, Isaacs SD, et al. Biological aggressiveness of hereditary prostate cancer: long-term evaluation following radical prostatectomy. 1998;160(3 pt 1):660–663.

    CAS  Google Scholar 

  116. Foster CS, Falconer A, Dodson AR, et al. Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 2004;23(35):5871–5879.

    PubMed  CAS  Google Scholar 

  117. Kupelian PA, Kupelian VA, Witte JS, Macklis R, Klein EA. Family history of prostate cancer in patients with localized prostate cancer: an independent predictor of treatment outcome. J Clin Oncol 1997;15(4):1478–1480.

    PubMed  CAS  Google Scholar 

  118. Potters L, Klein EA, Kattan MW, et al. Monotherapy for stage T1–T2 prostate cancer: radical prostatectomy, external beam radiotherapy, or permanent seed implantation. Radiother Oncol 2004;71(1):29–33.

    PubMed  Google Scholar 

  119. Kupelian PA, Elshaikh M, Reddy CA, Zippe C, Klein EA. Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: a large single-institution experience with radical prostatectomy and external-beam radiotherapy. J Clin Oncol 2002;20(16):3376–3385.

    PubMed  Google Scholar 

  120. Hanlon AL, Hanks GE. Patterns of inheritance and outcome in patients treated with external beam radiation for prostate cancer. Urology 1998;52(5):735–738.

    PubMed  CAS  Google Scholar 

  121. Azzouzi AR, Valeri A, Cormier L, Fournier G, Mangin P, Cussenot O. Familial prostate cancer cases before and after radical prostatectomy do not show any aggressiveness compared with sporadic cases. Urology 2003;61(6):1193–1197.

    PubMed  Google Scholar 

  122. Gronberg H, Damber L, Damber JE. Familial prostate cancer in Sweden. A nationwide register cohort study. Cancer 1996;77(1):138–143.

    PubMed  CAS  Google Scholar 

  123. Kupelian PA, Klein EA, Witte JS, Kupelian VA, Suh JH. Familial prostate cancer: a different disease? J Urol 1997;158(6):2197–2201.

    PubMed  CAS  Google Scholar 

  124. American Urological Association. Prostate Cancer Awareness For Men: A Doctor’s Guide for Patients. AUA, 2001:4–5.

    Google Scholar 

  125. Cancer Reference Information: Can Prostate Cancer Be Found Early? American Cancer Society. October 3, 2001.

    Google Scholar 

  126. Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med 2003;349(3):215–224.

    PubMed  CAS  Google Scholar 

  127. Lieberman R. Chemoprevention of prostate cancer: current status and future directions. Cancer Metastasis Rev 2002;21(3–4):297–309.

    PubMed  CAS  Google Scholar 

  128. Clark LC, Dalkin B, Krongrad A, et al. Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br J Urol 1998;81(5):730–734.

    PubMed  CAS  Google Scholar 

  129. Klein EA, Thompson IM. Update on chemoprevention of prostate cancer. Curr Opin Urol 2004;14(3):143–149.

    PubMed  Google Scholar 

  130. Klein EA. Clinical models for testing chemopreventative agents in prostate cancer and overview of SELECT: the Selenium and Vitamin E Cancer Prevention Trial. Recent Results Cancer Res 2003;163:212–225; discussion 264–266.

    PubMed  CAS  Google Scholar 

  131. Kommu S, Sharifi R, Edwards S, Eeles R. Proteomics and urine analysis-a potential promising new tool in urology. BJU Int 2004;93(9):1172–1173.

    PubMed  CAS  Google Scholar 

  132. McWhorter WP, Hernandez AD, Meikle AW, et al. A screening study of prostate cancer in high risk families. J Urol 1992;148(3):826–828.

    PubMed  CAS  Google Scholar 

  133. Tischkowitz M, Eeles R, IMPACT study: Identification of Men with genetic predisposition to Prostate Cancer and its Clinical Treatment collaborators. Mutations in BRCA1 and BRCA2 and predisposition to prostate cancer. Lancet 2003;362(9377):80; author reply 80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kommu, S.S., Eeles, R.A. (2005). Familial Prostate Cancer. In: Waxman, J. (eds) Urological Cancers. Springer, London. https://doi.org/10.1007/1-84628-015-X_2

Download citation

  • DOI: https://doi.org/10.1007/1-84628-015-X_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-911-1

  • Online ISBN: 978-1-84628-015-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics