Skip to main content

Proteomic Approaches to Problem Solving in Prostate Cancer

  • Chapter
Book cover Urological Cancers
  • 374 Accesses

Summary

If the major areas of prostate cancer research needing further development are discovering new targets for therapy, a better understanding of prostate cancer development, and discovery of new markers for more accurate diagnosis of prostate disease, then proteomic studies can contribute hugely to these areas. The relevance of protein rather than DNA and RNA information to such studies is that protein activity is the machinery of cell action; therefore, changes in protein profiles in cancer can be used on many levels, to detect, to understand, and finally to treat the cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherwood ER, et al. Two-dimensional protein profiles of cultured stromal and epithelial cells from hyperplastic human prostate. J Cell Biochem 1989;40(2):201–214.

    Article  PubMed  CAS  Google Scholar 

  2. Stamatiadis D, et al. Isoelectric focusing and 2D electrophoresis of the human androgen receptor. J Steroid Biochem Mol Biol 1992;41(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  3. Xia SJ, Hao GY, Tang XD. Androgen receptor isoforms in human and rat prostate. Asian J Androl 2000;2(4):307–310.

    PubMed  CAS  Google Scholar 

  4. Partin AW, et al. Preliminary immunohistochemical characterization of a monoclonal antibody (PRO:4-216) prepared from human prostate cancer nuclear matrix proteins. Urology 1997;50(5):800–808.

    Article  PubMed  CAS  Google Scholar 

  5. Liu X, et al. Proteomic analysis of the tumorigenic human prostate cell line M12 after microcell-mediated transfer of chromosome 19 demonstrates reduction of vimentin. Electrophoresis 2003;24(19–20):3445–3453.

    Article  PubMed  CAS  Google Scholar 

  6. Nagano K, et al. Differential protein synthesis and expression levels in normal and neoplastic human prostate cells and their regulation by type I and II interferons. Oncogene 2004;23(9):1693–1703.

    Article  PubMed  CAS  Google Scholar 

  7. Waghray A, et al. Identification of androgen-regulated genes in the prostate cancer cell line LNCaP by serial analysis of gene expression and proteomic analysis. Proteomics 2001;1(10):1327–1338.

    Article  PubMed  CAS  Google Scholar 

  8. Wright ME, et al. Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome Biol 2003;5(1):R4.

    Article  PubMed  Google Scholar 

  9. Gamble SC, et al. Androgens target prohibitin to regulate proliferation of prostate cancer cells. Oncogene 2004;23(17):2996–3004.

    Article  PubMed  CAS  Google Scholar 

  10. Alaiya AA, et al. Identification of proteins in human prostate tumor material by two-dimensional gel electrophoresis and mass spectrometry. Cell Mol Life Sci 2001;58(2):307–311.

    Article  PubMed  CAS  Google Scholar 

  11. Meehan KL, Holland JW, Dawkins HJ. Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate 2002;50(1):54–63.

    Article  PubMed  CAS  Google Scholar 

  12. Ahram M, et al. Proteomic analysis of human prostate cancer. Mol Carcinog 2002;33(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  13. Paweletz CP, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 2001;20(16):1981–1989.

    Article  PubMed  CAS  Google Scholar 

  14. Nelson PS, et al. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA 2002;99(18):11890–11895.

    Article  PubMed  CAS  Google Scholar 

  15. Eder IE, et al. Gene expression changes following androgen receptor elimination in LNCaP prostate cancer cells. Mol Carcinog 2003;37(4):181–191.

    Article  PubMed  CAS  Google Scholar 

  16. Nelson PS, et al. Comprehensive analyses of prostate gene expression: convergence of expressed sequence tag databases, transcript profiling and proteomics. Electrophoresis 2000;21(9):1823–1831.

    Article  PubMed  CAS  Google Scholar 

  17. Koivisto P, et al. Androgen receptor gene and hormonal therapy failure of prostate cancer. Am J Pathol 1998;152(1):1–9.

    PubMed  CAS  Google Scholar 

  18. Visakorpi T, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995;9(4):401–406.

    Article  PubMed  CAS  Google Scholar 

  19. Wang LG, Liu XM, Kreis W, Budman DR. Phosphorylation/dephosphorylation of androgen receptor as a determinant of androgen agonistic or antagonistic activity. Biochem Biophys Res Commun 1999;259(1):21–28.

    Article  PubMed  CAS  Google Scholar 

  20. Mason GG, et al. Phosphorylation of ATPase subunits of the 26S proteasome. FEBS Lett 1998;430(3):269–274.

    Article  PubMed  CAS  Google Scholar 

  21. Houry WA, et al. Identification of in vivo substrates of the chaperonin GroEL. Nature 1999;402(6758):147–154.

    Article  PubMed  CAS  Google Scholar 

  22. Ross JS, et al. Morphologic and molecular prognostic markers in prostate cancer. Adv Anat Pathol 2002;9(2):115–128.

    Article  PubMed  Google Scholar 

  23. Molloy MP. Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem 2000;280(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  24. Charrier JP, et al. Differential diagnosis of prostate cancer and benign prostate hyperplasia using two-dimensional electrophoresis. Electrophoresis 2001; 22(9):1861–1866.

    Article  PubMed  CAS  Google Scholar 

  25. Hlavaty JJ, et al. Identification and preliminary clinical evaluation of a 50.8-kDa serum marker for prostate cancer. Urology 2003;61(6):1261–1265.

    Article  PubMed  Google Scholar 

  26. Lehrer S, et al. Putative protein markers in the sera of men with prostatic neoplasms. BJU Int 2003;92(3):223–225.

    Article  PubMed  CAS  Google Scholar 

  27. Yasui Y, et al. A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 2003;4(3):449–463.

    Article  PubMed  Google Scholar 

  28. Petricoin EF 3rd, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002;94(20):1576–1578.

    PubMed  CAS  Google Scholar 

  29. Adam BL, et al. Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics 2001;1(10):1264–1270.

    Article  PubMed  CAS  Google Scholar 

  30. Diamandis EP. Re: serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2003;95(6):489–490; author reply 490–491.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gamble, S.C. (2005). Proteomic Approaches to Problem Solving in Prostate Cancer. In: Waxman, J. (eds) Urological Cancers. Springer, London. https://doi.org/10.1007/1-84628-015-X_10

Download citation

  • DOI: https://doi.org/10.1007/1-84628-015-X_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-911-1

  • Online ISBN: 978-1-84628-015-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics