Skip to main content

Structural Remodeling during Growth of Collateral Vessels

  • Chapter
Arteriogenesis

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 17))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–526.

    Article  PubMed  CAS  Google Scholar 

  2. Myers PR, Minor RLJ, Guerra RJ, Bates JN, Harrison DG. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature. 1990;345:161–163.

    Article  PubMed  CAS  Google Scholar 

  3. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–376.

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt HH, Walter U. NO at work. Cell. 1994;23:919–925.

    Article  Google Scholar 

  5. Szmitko PE, Fedak PW, Weisel RD, Stewart DJ, Kutryk MJ, Verma S. Endothelial progenitor cells: new hope for a broken heart. Circulation. 2003;107:3093–3100

    Article  PubMed  Google Scholar 

  6. Ziegelhoeffer T, Fernández, B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W. Bone Marrow-Derived Cells Do Not Incorporate Into the Adult Growing Vasculature. Circ Res. Dec 2003; online

    Google Scholar 

  7. Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, Pieczek A, Iwaguro H, Hayashi SI, Isner JM, Asahara T. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res. 2000;86:1198–1202.

    PubMed  CAS  Google Scholar 

  8. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–436.

    Article  PubMed  CAS  Google Scholar 

  9. Lindsey ML, Gannon J, Aikawa M, Schoen FJ, Rabkin E, Lopresti-Morrow L, Crawford J, Black S, Libby P, Mitchell PG, Lee RT. Selective matrix metalloproteinase inhibition reduces left ventricular remodeling but does not inhibit angiogenesis after myocardial infarction. Circulation. 2002;105:753–758.

    Article  PubMed  CAS  Google Scholar 

  10. Dor Y, Djonov V, Keshet E. Induction of vascular networks in adult organs: implications to proangiogenic therapy. Ann N Y Acad Sci. 2003;95:208–216.

    Google Scholar 

  11. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001;104:1046–1052.

    Article  PubMed  CAS  Google Scholar 

  12. Hedin U, Bottger BA, Luthman J, Johansson S, Thyberg J. A Substrate of the cell-attachment sequence of fibronectin (Arg-Gly-Asp-Ser) is sufficient to promote transition of arterial smooth muscle cells from a contractile to a synthetic phenotype. Dev Biol. 1989;133:489–501.

    Article  PubMed  CAS  Google Scholar 

  13. Thyberg J. Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury. Histol Histopathol. 1998;13:871–891.

    PubMed  CAS  Google Scholar 

  14. Moiseeva EP. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res. 2001;52:372–386.

    Article  PubMed  CAS  Google Scholar 

  15. Ruoslahti E. INTEGRINS. J Clin Invest. 1991;87:1–5.

    Article  PubMed  CAS  Google Scholar 

  16. Lafrenie RM, Yamada KM. Integrin-dependent signal transduction. J Cell Biochem. 1996;61:543–553.

    Article  PubMed  CAS  Google Scholar 

  17. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature. 1997;385:537–540.

    Article  PubMed  CAS  Google Scholar 

  18. Wolf C, Cai W-J, Vosschulte R, Kolatai S, Mousavipour D, Scholz D, Afsah-Hedjri A, Schaper W, Schaper J. Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol. 1998;30:2291–2305.

    Article  PubMed  CAS  Google Scholar 

  19. Wernig F, Mayr M, Xu Q. Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by betal-integrin signaling pathways. Hypertension. 2003;41:903–911.

    Article  PubMed  CAS  Google Scholar 

  20. Spofford CM, Chilian WM. The elastin-laminin receptor functions as a mechanotrans-ducer in vascular smooth muscle. Am JPhysiol Heart Circ Physiol 2001;280:H1354–H1360.

    CAS  Google Scholar 

  21. Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, Eichwald E, Keating MT. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998393:276–280.

    Article  PubMed  CAS  Google Scholar 

  22. Gabbiani G, Schmid E, Winter S, Chaponnier C, De Chastonay C, Vandekerckhove J, Weber K, Franke WW. Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. ProcNatlAcad Sci USA. 1981;78:298–301.

    Article  CAS  Google Scholar 

  23. Giuriato L. Rabbit ductus arteriosus during development: anatomical structure and smooth muscle cell composition. Anat Rec. 1993;235:95–110.

    Article  PubMed  CAS  Google Scholar 

  24. Li Z, Marchand P, Humbert J, Babinet C, Paulin D. Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice. Development. 1993;117:947–959.

    PubMed  CAS  Google Scholar 

  25. Li Z, Mericskay M, Agbulut O, Butleer-Browne G, Carlsson L, Thornell L-E, Babinet C, Paulin D. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J Cell Biol. 1997;139:129–144.

    Article  PubMed  CAS  Google Scholar 

  26. Agbulut O, Li Z, Perie S, Ludosky MA, Paulin D, Cartaud J, Butler-Browne G. Lack of desmin results in abortive muscle regeneration and modifications in synaptic structure. Cell Motil Cytoskeleton. 2001;49:51–66.

    Article  PubMed  CAS  Google Scholar 

  27. Kake T, Kimura S, Takahashi K, Maruyama K. Calponin induces actin polymerization at low ionic strength and inhibits depolymerization of actin filaments. Biochem J. 1995;312:587–592.

    PubMed  CAS  Google Scholar 

  28. Small J, Fuerst D, Thornell L. Review: The cytoskeletal lattice of muscle cells. Eur J Biochem. 1992;208:559–572.

    Article  PubMed  CAS  Google Scholar 

  29. Matthew JD, Khromov AS, McDuffie MJ, Soymlyo AP, Taniguchi S, Takahashi K. Contractile properties and proteins of smooth muscles of a calponin knockout mouse. J Physiol. 2000;529:811–24

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi K, Takagi M, Oghami K, Nakai M, Kojima A, Nadall-Ginard B, Shibata N. Inhibition of smooth muscle cell migration and proliferation caused by transfection of the human calponin gene is associated with enhanced cell matrix adhesion and reduced PDGF responsiveness. Circulation. 1993;88:1–174.

    Google Scholar 

  31. Taniguchi S, Takeoka M, Ehara T, Hashimoto S, Shibuki H, Yoshimura N, Shigematsu H, Takahashi K, Katsuki M. Structural fragility of blood vessels and peritoneum in calponin h1-deficient mice, resulting in an increase in hematogenous metastasis and peritoneal dissemination of malignant tumor cells. Cancer Res. 2001;61:7627–7634.

    PubMed  CAS  Google Scholar 

  32. Burridge K, Feramisco JR. Microinjection and localization of a 130 K protein in living fibroblasts: A relationship to actin and fibronectin. Cell. 1980;19:587–597.

    Article  PubMed  CAS  Google Scholar 

  33. Uglow EB, Slater S, Sala-Newby GB, Aguilera-Garcia CM, Angelini GD, Newby AC, George SJ. Dismantling of cadherin-mediated cell-cell contacts modulates smooth muscle cell proliferation. Circ Res. 2003;92:1314–1321.

    Article  PubMed  CAS  Google Scholar 

  34. Kumar MS, Owens GK. Combinatorial control of smooth muscle-specific gene expression. Arterioscler Thromb Vasc Biol. 2003;23:737–747.

    Article  PubMed  CAS  Google Scholar 

  35. Ronnov-Jessen L, Petersen OW. A function of filamentous α-smooth muscle actin: retardation of. 1996

    Google Scholar 

  36. Denger S, Jahn L, Wende P, Watson L, Gerber SH, Kubler W, Kreuzer J. Expression of monocyte chemoattractant protein-1 cDNA in vascular smooth muscle cells: induction of the synthetic phenotype: a possible clue to SMC differentiation in the process of atherogenesis. Atherosclerosis. 1999;144:15–23.

    Article  PubMed  CAS  Google Scholar 

  37. Pauly RR, Passaniti A, Bilato C, Monticone R, Cheng L, Papadopoulos N, Gluzband YA, Smith L, Weinstein C, E. G.L. Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation. Circ Res. 1994;75:41–54.

    PubMed  CAS  Google Scholar 

  38. Kenagy RD, Hart CE, Stetler-Stevenson WG, Clowes AW. Primate smooth muscle cell migration from aortic explants is mediated by endogenous platelet-derived gowth factor and basic fibroblast growth factor acting through matrix metalloproteinases 2 and 9. Circulation. 1997;96:3555–3560.

    PubMed  CAS  Google Scholar 

  39. George SJ, Johnson JL, Angelini GD, Newby AC, Baker AH. Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein. Hum Gene Ther. 1998;10:867–877.

    Article  Google Scholar 

  40. Chiu RC. Adult stem cell therapy for heart failure. Expert Opin Biol Ther. 2003;3:215–225.

    Article  PubMed  Google Scholar 

  41. Kashiwakura Y, Katoh Y, Tamayose K, Konishi H, Takaya N, Yuhara S, Yamada M, Sugimoto K, Daida H. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow. Circulation. 2003;107:2078–2081.

    Article  PubMed  Google Scholar 

  42. Caplice NM, Bunch TJ, Stalboerger PG, Wang S, Simper D, Miller DV, Russell SJ, Litzow MR, Edwards WD. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci USA. 2003;100:4754–4759.

    Article  PubMed  CAS  Google Scholar 

  43. Religa P, Bojakowski K, Maksymowicz M, Bojakowska M, Sirsjo A, Gaciong Z, Olszewski W, Hedin U, Thyberg J. Smooth-muscle progenitor cells of bone marrow origin contribute to the development of neointimal thickenings in rat aortic allografts and injured rat carotid arteries. Transplantation. 2002;74:1310–1315.

    Article  PubMed  Google Scholar 

  44. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408:92–96.

    Article  PubMed  CAS  Google Scholar 

  45. D’Amore PA. Kissing cousins-evidence for a common vascular cell precursor. Nat Med. 2000;6:1323–1324.

    Google Scholar 

  46. Munoz-Chapuli R, Gonzalez-Iriarte M, Carmona R, Atencia G, Macias D, Perez-Pomares JM. Cellular precursors of the coronary arteries. Tex Heart Inst J. 2002;29:243–249.

    PubMed  Google Scholar 

  47. Orkin SH. Stem cell alchemy. Nature Medicine. 2000;6:1212–1213.

    Article  PubMed  CAS  Google Scholar 

  48. Laflamme MA, Myerson D, Saffitz JE, Murry CE. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res. 2002;90:634–640.

    Article  PubMed  CAS  Google Scholar 

  49. Avolio A, Jones D, M. T-S. Quantification of alterations in structure and function of elastin in the arterial media. Hypertension. 1998;32:170–175.

    PubMed  CAS  Google Scholar 

  50. Krettek A, Sukhova GK, Libby P,. Elastogenesis in human arterial disease: a role for macrophages in disordered elastin synthesis. Arterioscler Thromb Vasc Biol. 2003;23:582–587.

    Article  PubMed  CAS  Google Scholar 

  51. Hinek A. Biological roles of the non-integrin elastin/laminin receptor. Biol Chem. 1996;377(7–8):471–480.

    PubMed  CAS  Google Scholar 

  52. Mochizuki S, Brassart B, Hinek A. Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem. 2002;277:44854–44863.

    Article  PubMed  CAS  Google Scholar 

  53. Peterszegi G, Robert L. Cell death induced in lymphocytes expressing the elastin-laminin receptor by excess agonists: necrosis and apoptosis. Biomed Pharmacother. 1998;52:369–377.

    Article  PubMed  CAS  Google Scholar 

  54. Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell. 1996;87:1069–1078.

    Article  PubMed  CAS  Google Scholar 

  55. Ichii T, Koyama H, Tanaka S, Kim S, Shioi A, Okuno Y, Raines EW, Iwao H, Otani S, Nishizawa Y. Fibrillar collagen specifically regulates human vascular smooth muscle cell genes involved in cellular responses and the pericellular matrix environment. Circ Res. 2001;88:460–467.

    PubMed  CAS  Google Scholar 

  56. Burke RD, Wang D, Jones VM. Ontogeny of vessell wall components in the outflow tract of the chick. Anat Embryol. 1994;189:447–456.

    Article  PubMed  CAS  Google Scholar 

  57. Wiberg C, Klatt AR, Wagener R, Paulsson M, Bateman JF, Heinegard D, Morgelin M. Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. JBiol Chem. 2003;ahead of print

    Google Scholar 

  58. Chiquet-Ehrisman R, Kalla P, Pearson CA, Beck K, Chiquet M. Tenascin interferes with fibronectin action. Cell. 1988;53:383–390.

    Article  Google Scholar 

  59. Mackie EJ, Scott-Burden T, Hahn AWA, Kern F, Bernhardt J, Regenass S, Weller A, Buehler FR. Expression of tenascin by vascular smooth muscle cells. Am J Pathol. 1992;141:377–388.

    PubMed  CAS  Google Scholar 

  60. Murphy-Ullrich JE, Lightner VA, Aukhil I, Yan YZ, Erickson HP, Hoeoek M. Focal adhesion integrity is downregulated by the alternatively spliced domain of human tenascin. J Cell Biol. 1991;115:1127–1136.

    Article  PubMed  CAS  Google Scholar 

  61. Castellon R, Caballero S, Hamdi HK, Atilano SR, Aoki AM, Tarnuzzer RW, Kenney MC, Grant MB, Ljubimov AV. Effects of tenascin-C on normal and diabetic retinal endothelial cells in culture. Invest Ophthalmol Vis Sci. 2002;43:2758–2766.

    PubMed  Google Scholar 

  62. Zagzag D, Shiff B, Jallo GI, Greco MA, Blanco C, Cohen H, Hukin J, Allen JC, Friedlander DR. Tenascin-C promotes microvascular cell migration and phosphorylation of focal adhesion kinase. Cancer Res. 2002;62:2660–8.62.

    PubMed  CAS  Google Scholar 

  63. Tyagi SC, Kumar S, Cassatt S, Parker JL. Temporal expression of extracellular matrix met-alloproteinases and tissue plasminogen activator in the development of collateral vessels in the canine model of coronary occlusion. Can J Physiol Pharmacol. 1996;74::983–:995.

    Article  CAS  Google Scholar 

  64. Reidy M, Irvin C, Lindner V. Migration of arterial wall cells: Expression of plasminogen activators and inhibitors in injured rat arteries. Circ Res. 1996;78:405–414.

    PubMed  CAS  Google Scholar 

  65. Hasenstab D, Forough R, Clowes AW. Plasminogen activator inhibitor type 1 and tissue inhibitor of metallo proteinases-2 increase after arterial injury in rats. Circulation Research. 1997;80:490–496.

    PubMed  CAS  Google Scholar 

  66. Carmeliet P, Moons L, Lijnen R, Janssens S, Lupu F, Collen D, Gerard RD. Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation. 1997;96:3180–3191.

    PubMed  CAS  Google Scholar 

  67. Carmeliet P, Moons L, Herbert JM, Crawley J, Lupu F, Lijnen R, Collen D. Urokinase but not tissue plasminogen activator mediates arterial neointima formation in mice. Circ Res. 1997;81:829–839.

    PubMed  CAS  Google Scholar 

  68. Cai W-J, Vosschulte R, Afsah-Hedjri A, Koltai S, Kocsis E, Scholz D, Kostin S, Schaper W, Schaper J. Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronary arteriogenesis. J Mol Cell Cardiol. 2000:32:997–1011.

    Article  PubMed  CAS  Google Scholar 

  69. Rutherford C, Martin W, Salame M, Carrier M, Anggard E, Ferns G. Substantial inhibition of neo-intimal response to balloon injury in the rat carotid artery using a combination of antibodies to platelet-derived growth factor-BB and basic fibroblast growth factor. Atherosclerosis. 1997;130:45–51.

    Article  PubMed  CAS  Google Scholar 

  70. Ergul A, Portik-Dobos V, Giulumian AD, Molero MM, Fuchs LC. Stress Upregulates Arterial Matrix Metalloproteinase Expression and Activity via Endothelin A Receptor Activation. Am J Physiol Heart Circ Physiol. 2003;online

    Google Scholar 

  71. Cai W-j, Koltai S, Kocsis E, Scholz D, Kostin S, Luo X, Schaper W, Schaper J. Remodeling of the adventitia during coronary arteriogenesis. Am J Physiol Heart Circ Physiol. 2003;284:H31–40.

    PubMed  CAS  Google Scholar 

  72. Maeng M, Mertz H, Nielsen S, Van Eys GJ, Rasmussen K, Espersen GT. Adventitial myofi-broblasts play no major role in neointima formation after angioplasty. Scand Cardiovasc J. 2003:37:34–42.

    Article  PubMed  CAS  Google Scholar 

  73. Siow RC, Mallawaarachchi CM, Weissberg PL. Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries. Cardiovasc Res. 2003;59:212–221.

    Article  PubMed  CAS  Google Scholar 

  74. Hinz B, Mastrangelo D, Iselin C, Chaponnier C, Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol. 2001;159:1009–1020.

    PubMed  CAS  Google Scholar 

  75. Cai W-J, Koltai S, Kocsis E, Scholz D, Schaper W, Schaper J. Connexin37, not Cx40 and Cx43, is induced in vscular smooth muscle cells during coronary arteriogenesis. J Mol Cell Cardiol. 2001;33:957–967.

    Article  PubMed  CAS  Google Scholar 

  76. Cai W-J, Kocsis E, Scholz D, Luo X, Schaper W, Schaper J. Presence of Cx37 and lack of desmin in smooth muscle cells are early markers for arteriogenesis. Submitted to Mol Biochem. 2003

    Google Scholar 

  77. Scholz D, Cai W-J, Schaper W. Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis. 2001;4:247–257.

    Article  PubMed  CAS  Google Scholar 

  78. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M, Busse R, Schaper J, Schaper W. Ultrastructure and molecular histology of rabbit hind limb collateral artery growth (arte riogenesis). Virchows Arch. 2000;436:257–270.

    Article  PubMed  CAS  Google Scholar 

  79. Spaet TH, Stemermann MB, Veith FJ, Leijnieks I. Intimal injury and regrowth in the rabbit aorta: medial smooth muscle cells as a source of neoinitma. Circ Res. 1975;36:58–70.

    PubMed  CAS  Google Scholar 

  80. Wu L, Tanimoto A, Murata Y, Fan J, Sasaguri Y, Watanabe T. Induction of human matrix metalloproteinase-12 gene transcriptional activity by GM-CSF requires the AP-1 binding site in human U937 monocytic cells. Biochem Biophys Res Commun. 2001;285:300–307.

    Article  PubMed  CAS  Google Scholar 

  81. Shapiro SD. Diverse roles of macrophage matrix metalloproteinases in tissue destruction and tumor growth. Thromb Haemost. 1999;82:846–849.

    PubMed  CAS  Google Scholar 

  82. Suzuki T, Hashimoto S, Toyoda N, Nagai S, Yamazaki N, Dong HY, Sakai J, Yamashita T, Nukiwa T, Matsushima K. Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE. Blood. 2000;96:2584–2591.

    PubMed  CAS  Google Scholar 

  83. Lacraz S, Isler P, Vey E, Welgus HG, Dayer JM. Direct contact between T-lymphocytes and monocytes is a major pathway for induction of metalloproteinase expression. J Biol Chem. 1994;269:22027–22033.

    PubMed  CAS  Google Scholar 

  84. Amorino GP, Hoover RL. Interactions of monocytic cells with human endothelial cells stimulate monocytic metalloproteinase production. Am J Pathol. 1998;152:199–207.

    PubMed  CAS  Google Scholar 

  85. Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, Schaper W. Blood mono-cyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol. 2002;283:H2411–H2419.

    PubMed  CAS  Google Scholar 

  86. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res. 1997;80:829–837.

    PubMed  CAS  Google Scholar 

  87. Ziegelhoeffer T, Hoefer IE, Van Royen N, Buschmann IR. Effective reduction in collateral artery formation through matrix metalloproteinase inhibitors. Circulation. 1999;100:I-705.

    Google Scholar 

Download references

Authors

Editor information

Wolfgang Schaper Jutta Schaper

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Cai, Wj., Scholz, D., Ziegelhoeffer, T., Schaper, J. (2004). Structural Remodeling during Growth of Collateral Vessels. In: Schaper, W., Schaper, J. (eds) Arteriogenesis. Basic Science for the Cardiologist, vol 17. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8126-X_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8126-X_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8125-5

  • Online ISBN: 978-1-4020-8126-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics