Skip to main content

Expression Profiling of Growing Collateral Arteries/Hunting for New Genes

  • Chapter
Arteriogenesis

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 17))

  • 90 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unger EF, Banai S, Shou M, Lazarous DF, Jaklitsch MT, Sheinowitz M, Correa R, Klingbeil C, Epstein SE. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol. 1994;266:H1588–H1595.

    PubMed  CAS  Google Scholar 

  2. Fernández B, Buehler A, Wolfram S, Kostin S, Espanion G, Franz WM, Niemann H, Doevendans PA, Schaper W, Zimmermann R. Transgenic myocardial overexpression of fibroblast growth factor-1 increases coronary artery density and branching. Circ Res. 2000;87:207–213.

    PubMed  Google Scholar 

  3. Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W. Contribution of arteriogenesis and angiogenesis to postocclusive hind limb perfusion in mice. J Mol Cell Cardiol. 2002;34:775–787.

    Article  PubMed  CAS  Google Scholar 

  4. Deindl E, Hoefer IE, Fernández B, Barancik M, Heil M, Strniskova M, Schaper W. Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis. Circ Res. 2003;92:561–568.

    Article  PubMed  CAS  Google Scholar 

  5. Rissanen TT, Markkanen JE, Arve K, Rutanen J, Kettunen MI, Vajanto I, Jauhiainen S, Cashion L, Gruchala M, Narvanen O, Taipale P, Kauppinen RA, Rubanyi GM, Yla-Herttuala S. Fibroblast growth factor-4 induces vascular permeability, angiogenesis, and arteriogenesis in a rabbit hind limb ischemia model. FASEB J. 2002;02–0377.

    Google Scholar 

  6. Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P. Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hind limbs. Circulation. 2002;106:2257–2262.

    Article  PubMed  CAS  Google Scholar 

  7. Hoefer IE, van Royen N, Rectenwald JE, Bray EJ, Abouhamze Z, Moldawer LL, Voskuil M, Piek JJ, Buschmann IR, Ozaki CK. Direct Evidence for tumor necrosis factor-(alpha) signaling in arteriogenesis. Circulation. 2002;105:1639–1641.

    Article  PubMed  CAS  Google Scholar 

  8. Liu Z-J, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, Fairman RM, Velazquez OC, Herlyn M. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: Implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol. 2003;23:14–25.

    Article  PubMed  Google Scholar 

  9. Nakamura T, Ruiz-Lozano P, Lindner V, Yabe D, Taniwaki M, Furukawa Y, Kobuke K, Tashiro K, Lu Z, Andon NL, Schaub R, Matsumori A, Sasayama S, Chien KR, Honjo T. DANCE, a novel secreted RGD protein expressed in developing, atherosclerotic and balloon-injured arteries. J Biol Chem. 1999;274:22476–22483.

    Article  PubMed  CAS  Google Scholar 

  10. Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng C-F, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross JR.J, Honjo T, Chien KR. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature. 2002;415:171–175.

    Article  PubMed  CAS  Google Scholar 

  11. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res. 1997;80:829–837.

    PubMed  CAS  Google Scholar 

  12. CaiW-J, Vosschulte R, Afsah-Hedjri A, Koltai S, Kocsis E, Scholz D, Kostin S, Schaper W, Schaper J. Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronary arteriogenesis. J Mol Cell Cardiol. 2000;32:997–10111.

    Article  PubMed  CAS  Google Scholar 

  13. Kampmann A, Fernández B, Kubin T, von der Ahe D, Schaper W, Zimmermann R. Osteoglycin: a potential new target for the promotion of arteriogenesis? Circulation. 2001;104:II–235.

    Google Scholar 

  14. Boengler K, Pipp F, Broich K, Fernández B, Schaper W, Deindl E. Identification of differentially expressed genes like cofilin2 in growing collateral arteries. Biochem Biophysic Res Comm. 2003;300:751–756.

    Article  CAS  Google Scholar 

  15. Deindl E, Buschmann I, Hoefer IE, Podzuweit T, Boengler K, Vogel S, van Royen N, Fernández B, Schaper W. Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res. 2001;89:779–786.

    Article  PubMed  CAS  Google Scholar 

  16. Buschmann I, Schaper W. Arteriogenesis versus angiogenesis: two mechanisms of vessel growth. News Physiol Sci. 1999;14:121–125.

    PubMed  Google Scholar 

  17. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389–395.

    Article  PubMed  CAS  Google Scholar 

  18. Hershey JC, Baskin EP, Glass JD, Hartman HA, Gilberto DA, Rogers IT, Cook JJ. Revascularization in the rabbit hind limb: dissociation between capillary sprouting and arteriogenesis. Cardiovasc Res. 2001;49:618–625.

    Article  PubMed  CAS  Google Scholar 

  19. Liang P, Pardee AP. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992;257:967–971.

    Article  PubMed  CAS  Google Scholar 

  20. Liang P, Bauer D, Averboukh L, Warthoe P, Rohrwild M, Muller H, Strauss M, Pardee AB. Analysis of altered gene expression by differential display, in (eds.): Methods in Enzymology. New York: Academic Press; 1995:304–321.

    Google Scholar 

  21. Liang P, Pardee AB. Differential display methods and protocols. Totowa, N.J.: Humana Press; 1997.

    Google Scholar 

  22. Diatchenko L, Lau Y-F, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskayqa N, Sverdlov ED, Siebert PD. Suppression substratctive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA. 1996;93:6025–6030.

    Article  PubMed  CAS  Google Scholar 

  23. Boengler K, Pipp F, Schaper W, Deindl E. Rapid identification of differentially expressed genes by combination of SSH and MOS. Lab Invest. 2003;83:759–761.

    PubMed  Google Scholar 

  24. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995;270:484–487.

    Article  PubMed  CAS  Google Scholar 

  25. Virlon B, Cheval L, Buhler J-M, Billon E, Doucet A, Elalouf J-M. Serial microanalysis of renal transcriptomes. Proc Natl Acad Sci USA. 1999;96:15286–15291.

    Article  PubMed  CAS  Google Scholar 

  26. Bentz H, Nathan R, Rosen D, Armstrong R, Thompson A, Segarini P, Mathews M, Dasch J, Piez K, Seyedin S. Purification and characterization of a unique osteoinductive factor from bovine bone. J Biol Chem. 1989;264:20805–20810.

    PubMed  CAS  Google Scholar 

  27. Bentz H, Thompson AY, Armstrong R, Chang RJ, Piez KA, Rosen DM. Transforming growth factor-beta 2 enhances the osteoinductive activity of a bovine bone-derived fraction containing bone morphogenetic protein-2 and-3. Matrix. 1991;11:269–275.

    PubMed  CAS  Google Scholar 

  28. Funderburgh JL, Corpuz LM, Roth MR, Funderburgh ML, Tasheva ES, Cconrad GW. Mimecan, the 25-kDa corneal keratan sulfate proteoglycan, is a product of the gene producing osteoglycin. J Biol Chem. 1997;272:28089–28095.

    Article  PubMed  CAS  Google Scholar 

  29. Iozzo R. The family of small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol. 1997;32:141–174.

    Article  PubMed  CAS  Google Scholar 

  30. Tasheva ES, Pettenati M, von Kap-Her C, Conrad GW. Assignemant of mimemacan gene (OGN) to human chromosome band 9q22 by in situ hybridization. Cytogenet Cell Genet. 1999;88:326–327.

    Article  Google Scholar 

  31. Tasheva ES, Koester A, Paulsen AQ, Garett AS, Boyle DL, Davidson HJ, Song M, Fox N, Conrad GW. Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol Vision. 2002;8:407–415.

    CAS  Google Scholar 

  32. Shanahan CM, Cary NRB, Osbourn JK, Weissberg PL. Identification of osteoglycin as a component of the vascular matrix. Differential expression during neointima formation and in atherosclerotic plaques. Arterioscler Thromb Vase Biol. 1997;17:2437–2447.

    CAS  Google Scholar 

  33. Adams LD, Geary RL, Mcmanus B, Schwartz SM. A Comparison of aorta and vena cava medial message expression by cDNA array analysis identifies a set of 68 consistently differentially expressed genes, all in aortic media. Circ Res 2000;87:623–615.

    PubMed  CAS  Google Scholar 

  34. Bondjers C, Kalen M, Hellstrom M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol. 2003;162:721–729.

    PubMed  CAS  Google Scholar 

  35. Mittmann C, Chung CH, Hoppner G, Michalek C, Nose M, Schuler C, Schuh A, Eschenhagen T, Weil J, Pieske B. Expression of ten RGS proteins in human myocardium: functional characterization of an upregulation of RGS4 in heart failure. Cardiovascr Res. 2002;55:778–786.

    Article  CAS  Google Scholar 

  36. Wang Q, Liu M, Mullah B, Siderovski DP, Neubig RR. Receptor-selective Effects of Endogenous RGS3 and RGS5 to regulate mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J Biol Chem. 2002;277:24949–24958.

    Article  PubMed  CAS  Google Scholar 

  37. Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J. 2003;02–0340.

    Google Scholar 

  38. Arras M, Strasser R, Mohri M, Doll R, Eckert P, Schaper W, Schaper J. Tumor necrosis factor-alpha is expressed by monocytes/macrophages following coronary microembolization and is antagonized by cyclosporine. Basic Res Cardiol. 1998;93:97–107.

    Article  PubMed  CAS  Google Scholar 

  39. Galbraith CG, Skalak R, Chien S. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskeleton. 1998;40:317–330.

    Article  PubMed  CAS  Google Scholar 

  40. Moon A, Drubin DG. The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol Biol Cell. 1995;6:1423–1431.

    PubMed  CAS  Google Scholar 

  41. Theriot JA. Accelerating on a Treadmill: ADF/cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton. J Cell Biol. 1997;136:1165–1168.

    Article  PubMed  CAS  Google Scholar 

  42. Yonezawa N, Nishida E, Sakai H. pH control of actin polymerization by cofilin. J Biol Chem. 1985;260:14410–14412.

    PubMed  CAS  Google Scholar 

  43. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard H, Caroni P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998;393:805–809.

    Article  PubMed  CAS  Google Scholar 

  44. Toshima J, Toshima JY, Amano T, Yang N, Narumiya S, Mizuno K. Cofilin Phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization andfocal adhesion formation. MolBiol Cell. 2001;12:1131–1145.

    CAS  Google Scholar 

  45. Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Control of actin reorganization by slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002;108:233–246.

    Article  PubMed  CAS  Google Scholar 

  46. Ono S, Minami N, Abe H, Obinata T. Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle. J Biol Chem. 1994;269:15280–15286.

    PubMed  CAS  Google Scholar 

  47. Vartiainen MK, Mustonen T, Mattila PK, Ojala PJ, Thesleff I, Partanen J, Lappalainen P. The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics. Mol Biol Cell. 2002;13:183–194.

    Article  PubMed  CAS  Google Scholar 

  48. Wolf C, Cai WJ, Vosschulte R, Koltai S, Mousavipour D, Scholz D, Afsah-Hedjri A, Schaper W, Schaper J. Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol. 1998;30:2291–2305.

    Article  PubMed  CAS  Google Scholar 

  49. Schwartz MA, Shattil SJ. Signaling networks linking integrins and Rho family GTPases. TrendsBiochem Sci. 2000;25:388–391.

    CAS  Google Scholar 

  50. Kilebt, Schulman BA, Alexander WS, Nicola NA, Martin Hme, Hilton DJ. The SOCS box: a tale of destruction and degradation. Trends Biochem Sci. 2002;27:235–241.

    Article  Google Scholar 

  51. Kile BT, Alexander WS. The suppressors of cytokine signaling (SOCS). Cell Mol Life Sci. 2001;58:1627–1635.

    Article  PubMed  CAS  Google Scholar 

  52. Boengler K, Pipp F, Fernandez B, Richter A, Schaper W, Deindl E. The ankyrin repeat containing SOCS box protein 5: a novel protein associated with arteriogenesis. Biochem Biophysl Res Comm. 2003;302:17–22.

    Article  CAS  Google Scholar 

  53. Uwatoku T, Shimokawa H, Abe K, Matsumoto Y, Hattori T, Oi K, Matsuda T, Kataoka K, Takeshita A. Application of nanoparticle technology for the prevention of restenosis after balloon injury in rats. Circ Res. 2003;92:62e–669.

    Article  CAS  Google Scholar 

  54. Zhang JG, Farley A, Nicholson SE, Willson TA, Zugaro LM, Simpson RJ, Moritz RL, Cary D, Richardson R, Hausmann G, Kile BJ, Kent SBH, Alexander WS, Metcalf D, Hilton DJ, Nicola NA, Baca M. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci. 1999;96:2071–2076.

    Article  PubMed  CAS  Google Scholar 

  55. Nicholson SE, Willson TA, Farley A, Starr R, Zhang J-G, Baca M, Alexander WS, Metcalf D, Hilton DJ, Nicola NA. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 1999;18:375–385.

    Article  PubMed  CAS  Google Scholar 

  56. Kuo H, Chen J, Ruiz-Lozano P, Zou Y, Nemer M, Chien K. Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development. 1999;126:4223–4234.

    PubMed  CAS  Google Scholar 

  57. Aihara Y, Kurabayashi M, Arai M, Kedes L, Nagai R. Molecular cloning of rabbit CARP cDNA and its regulated expression in adriamycin-cardiomyopathy. Biochimt Biophys Acta (BBA). 1999;1447:318–324.

    CAS  Google Scholar 

  58. Zolk O, Frohme M, Maurer A, Kluxen F-W, Hentsch B, Zubakov D, Hoheisel J, Zucker IH, Pepe S, T. E.Cardiac ankyrin repeat protein, a negative regulator of cardiac gene expression is augmented in human heart failure. Biochem Biophys Res Comm. 2002;293:1377–1382.

    Article  PubMed  CAS  Google Scholar 

  59. Zou Y, Evans S, Chen J, Kuo H, Harvey R, Chien K. Carp, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development. 1997;124:793–804.

    PubMed  CAS  Google Scholar 

  60. Jeyaseelan R, Poizat C, Baker RK, Abdishoo S, Isterabadi LB, Lyons GE, Kedes L. A novel cardiac-restricted target for doxorubicin. Carp, a nuclear modulator of gene expresion in cardiac progenitor cells and cardiomyocytes. J Biol Chem. 1997;272:22800–22808.

    Article  PubMed  CAS  Google Scholar 

  61. Boengler, K., Pipp, F., Fernández, B., Ziegelhoeffer, T., Schaper, W., Deindl, E. Arteriogenesis is associated with an induction of the cardiac ankyrin repeat protein (carp). Cardiovasc Res 2003, 59, 573–581

    Article  PubMed  CAS  Google Scholar 

  62. Schwachtgen J-L, Houston P, Campbell C, Sukhatme V, Braddock M. Fluid shear stress activation of Egr-1 transcription in cultured human endothelial and epithelial cells Is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway. J Clin Invest. 1998;101:2540–2549.

    Article  PubMed  CAS  Google Scholar 

  63. Yoshisue H, Suzuki K, Kawabata A, Ohya T, Zhao H, Sakurada K, Taba Y, Sasaguri T, Sakai N, Yamashita S. Large scale isolation of non-uniform shear stress-responsive genes from cultured human endothelial cells through the preparation of a subtracted cDNA library. Atherosclerosis. 2002;162:323–334.

    Article  PubMed  CAS  Google Scholar 

  64. Negishi M, Lu D, Zhang YQ, Sawada Y, Sasaki T, Kayo T, Ando J, Izumi T, Kurabayashi M, Kojima I, Masuda H, Takeuchi T. Upregulatory expression of furin and transforming growth factor-ß by fluid shear stress in vascular endothelial cells. Arterscler Thromb Vasc Biol. 2001;21:785–790.

    CAS  Google Scholar 

  65. Kanai H, Tanaka T, Aihara Y, Takeda S-I, Kawabata M, Miyazono K, Nagai R, Kurabayashi M. Transforming Growth Factor-ta/SMADs signaling induces transcription of the cell type-restricted ankyrin repeat protein carp gene through CAGA motif in vascular smooth muscle cells. Circ Res. 2001;88:30–29.

    PubMed  CAS  Google Scholar 

  66. Liu C, Yao J, de Belle I, Huang R-P, Adamson E, Mercola D. The Transcription factor Egr-1 suppresses transformation of human fibrosarcoma HT1080 cells by coordinated induction of transforming growth factor-beta 1, fibronectin, and plasminogen activator inhibitor-1. J Biol Chem. 1999;274:4400–4411.

    Article  PubMed  CAS  Google Scholar 

  67. Biesiada E, Razandi M, Levin ER. Egr-1 activates basic fibroblast growth factor transcription.Mechanistic implications for astrocyte proliferation. J Biol Chem. 1996;271:18576–18581.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Wolfgang Schaper Jutta Schaper

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Zimmermann, R., Boengler, K., Kampmann, A., Fernández, B., Deindl, E., Schaper, W. (2004). Expression Profiling of Growing Collateral Arteries/Hunting for New Genes. In: Schaper, W., Schaper, J. (eds) Arteriogenesis. Basic Science for the Cardiologist, vol 17. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8126-X_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8126-X_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8125-5

  • Online ISBN: 978-1-4020-8126-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics