Skip to main content

Fibroblast Growth Factors

  • Chapter
Arteriogenesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Comm. 2000;277:494–498.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235:442–447.

    Article  PubMed  CAS  Google Scholar 

  3. Klein S, Roghani M, Rifkin DB. Fibroblast growth factors as angiogenesis factors: new insights into their mechanism of action. Exs. 1997;79:159–192.

    PubMed  CAS  Google Scholar 

  4. Fernig DG, Gallagher JT. Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog Growth Factor Res. 1994;5:353–377.

    Article  PubMed  CAS  Google Scholar 

  5. Partanen J, Vainikka S, Korhonen J, Armstrong E, Alitalo K. Diverse receptors for fibroblast growth factors. Prog Growth Factor Res. 1992;4:69–83.

    Article  PubMed  CAS  Google Scholar 

  6. Burgess WH, Mehlman T, Marshak DR, Fraser BA, Maciag T. Structural evidence that endothelial cell growth factor beta is the precursor of both endothelial cell growth factor alpha and acidic fibroblast growth factor. Proc NatlAcad Sci USA. 1986;83:7216–20.

    Article  CAS  Google Scholar 

  7. Jaye M, Howk R, Burgess W, Ricca GA, Chiu IM, Ravera MW, O’Brien SJ, Modi WS, Maciag T, Drohan WN. Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science. 1986;233:541–545.

    Article  PubMed  CAS  Google Scholar 

  8. Burgess WH, Maciag T. The heparin binding (Fibroblast growth factor) family proteins. Ann Rev Biochem. 1989;58:575–606.

    Article  PubMed  CAS  Google Scholar 

  9. Nugent MA, Iozzo RV. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000;32:115–120.

    Article  PubMed  CAS  Google Scholar 

  10. Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000;32:263–267.

    Article  PubMed  CAS  Google Scholar 

  11. Baird A, Esch F, Mormede P, Ueno N, Ling N, Bohlen P, Ying SY, Wehrenberg WB, Guillemin R. Molecular characterization of fibroblast growth factor: distribution and biological activities in various tissues. Recent Prog Horm Res. 1986;42:143–205.

    PubMed  CAS  Google Scholar 

  12. Gospodarowicz D, Neufeld G, Schweigerer L. Molecular and biological characterization of fibroblast growth factor, an angiogenic factor which also controls the proliferation and differentiation of mesoderm and neuroectoderm derived cells. Cell Differ. 1986;19:1–17.

    Article  PubMed  CAS  Google Scholar 

  13. Casscells W, Speir E, Sasse J, Klagsbrun M, Allen P, Lee M, Calvo B, Chiba M, Haggroth L, Folkman J, Epstein SE. Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest. 1990;85:433–441.

    Article  PubMed  CAS  Google Scholar 

  14. Spirito P, Fu Y-M, Yu Z-X, Epstein SE, Casscells W. Immunohistochemical localization of basic and acidic fibroblast growth factors in the developing rat heart. Circulation. 1991;84:322–332.

    PubMed  CAS  Google Scholar 

  15. Mima T, Ueno H, Fischman DA, Williams LT, Mikawa T. Fibroblast growth factor receptor is required for in vivo myocyte proliferation at early embryonic stages of heart development. Proc Natl Acad Sci USA. 1995;92:467–471.

    Article  PubMed  CAS  Google Scholar 

  16. Quinkler W, Maasberg M, Bernotat-Danielowski S, Luthe N, Sharma HS, Schaper W. Isolation of heparin-binding growth factors from bovine, porcine and canine hearts. EurJBiochem. 1989;181:67–73.

    CAS  Google Scholar 

  17. Schaper W. Collateral vessel growth in the human heart — role of fibroblast growth factor-2. Circulation. 1996;94:600–601.

    PubMed  CAS  Google Scholar 

  18. Bernotat-Danielowski S, Sharma HS, Schott RJ, Schaper W. Generation and localisation of monoclonal antibodies against fibroblast growth factors in ischaemic collateralised porcine myocardium. Cardiovas Res. 1993;27:1220–1228.

    Article  CAS  Google Scholar 

  19. Engelmann GL, Dionne CA, Jaye MC. Acidic fibroblast growth factor and heart development. Role in myocyte proliferation and capillary angiogenesis. CircRes. 1993;72:7–19.

    CAS  Google Scholar 

  20. Harada K, Grossman W, Friedman M, Edelman ER, Prasad PV, Keighley CS, Manning WJ, Sellke FW, Simons M. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest. 1994;94:623–630.

    Article  PubMed  CAS  Google Scholar 

  21. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayagam MAS, Hunsberger S, Robison WG, Stiber JA, Correa R, Epstein SE, Unger EF. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation. 1995;91:145–153.

    PubMed  CAS  Google Scholar 

  22. Htun P, Ito WD, Hoefer IE, Schaper J, Schaper W. Intramyocardial infusion of FGF-1 mimics ischemic preconditioning in pig myocardium. J Mol Cell Cardiol. 1998;30:867–877.

    Article  PubMed  CAS  Google Scholar 

  23. Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation. 1998;97:645–650.

    PubMed  CAS  Google Scholar 

  24. Robinson M, Overbeek P, Verran D, Grizzle W, Stockard C, Friesel R, Maciag T, Thompson J. Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice. Development. 1995;121:505–514.

    PubMed  CAS  Google Scholar 

  25. Fernandez B, Buehler A, Wolfram S, Kostin S, Espanion G, Franz WM, Niemann H, Doevendans PA, Schaper W, Zimmermann R. Transgenic myocardial overexpression of fibroblast growth factor-1 increases coronary artery density and branching. Circ Res. 2000;87:207–213.

    PubMed  CAS  Google Scholar 

  26. Strohm C, Barancik M, Von Bruehl M-L, Kilian SAR, Schaper W. Inhibition of the ER-kinase cascade by PD98059 and UO126 counteracts ischemic preconditioning in pig myocardium. J CardiovascPharmacol. 2000;36:216–229.

    Google Scholar 

  27. Buehler A, Martire A, Strohm C, Wolfram S, Fernández B, Palmen M, Wehrens XHT, Doevendans PA, Franz WM, Schaper W, Zimmermann R. Angiogenesis-independent cardioprotection in FGF-1 transgenic mice. CardiovascRes. 2002;55:768–777.

    Article  CAS  Google Scholar 

  28. Murphy PR, Knee RS. Identification and characterization of an antisense RNA transcript (gfg) from the human basic fibrobalst growth factor gene. Mol Endocrinol. 1994;8:852–859.

    Article  PubMed  CAS  Google Scholar 

  29. Li AW, Too CKL, Knee R, Wilkinson M, Murphy PR. FGF-2 antisense RNA encodes a nuclear protein with MutT-like antimutator activity. Mol Cell Endocrinol. 1997;133:177–182.

    Article  PubMed  Google Scholar 

  30. Lindner V. Role of basic fibroblast growth factor and platelet-derived growth factor (B-chain) in neointima formation after arterial injury. ZKardiol. 1995;84:137–144.

    CAS  Google Scholar 

  31. Leconte I, Fox JC, Baldwin HS, Buck CA, Swain JL. Adenoviral-mediated expression of antisense RNA to fibroblast growth factors disrupts murine vascular development. Dev Dyn. 1998;213:421–430.

    Article  PubMed  CAS  Google Scholar 

  32. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol. 1998;141:1659–1673.

    Article  PubMed  CAS  Google Scholar 

  33. Lee SH, Schloss DJ, Swain JL. Maintenance of Vascular Integrity in the Embryo Requires Signaling through the Fibroblast Growth Factor Receptor. J Biol Chem. 2000;275:33679–33687.

    Article  PubMed  CAS  Google Scholar 

  34. Kranenburg AR, De Boer WI, Van Krieken HJM, Mooi WJ, Walters JE, Saxena PR, Sterk PJ, Sharma HS. Enhanced expression of fibroblast growth factors and receptor FGFR-1 during vascular remodeling in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2002;27:517–525.

    PubMed  CAS  Google Scholar 

  35. Clasper S, Vekemans S, Fiore M, Plebanski M, Wordsworth P, David G, Jackson DG. Inducible expression of the cell surface heparan sulfate proteoglycan syndecan-2 (fibro-glycan) on human activated macrophages can regulate fibroblast growth factor action. J Biol Chem. 1999;274:24113–24123.

    Article  PubMed  CAS  Google Scholar 

  36. Cizmeci-Smith G, Langan E, Youeky J, Showalter LJ, Carey DJ. Syndecan-4 is a primary response gene induced by basic fibroblast growth factor and arterial injury in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997;17:172–180.

    PubMed  CAS  Google Scholar 

  37. Woods A, Couchman JR. Syndecans: synergistic activators of cell adhesion. Trends Cell Biol. 1998;8:189–192.

    Article  PubMed  CAS  Google Scholar 

  38. Tumova S, Woods A, Couchman JR. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. IntJBiochem CellBiol. 2000;32:269–288.

    CAS  Google Scholar 

  39. Knox S, Merry C, Stringer S, Melrose J, Whitelock J. Not all perlecans are created equal. Interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J Biol Chem. 2002;277:14657–14665.

    CAS  Google Scholar 

  40. Parsons-Wingerter P, Elliott KE, Clark JI, Farr AG. Fibroblast growth factor-2 selectively stimulates angiogenesis of small vessels in arterial tree. Arterioscler Thromb Vasc Biol. 2000;20:1250–1256.

    PubMed  CAS  Google Scholar 

  41. Brogi E, Winkles JA, Underwood R, Clinton SK, Alberts GF, Libby P. Distinct patterns of expression of fibroblast growth factors and their receptors in human atheroma and nonatherosclerotic plaques. J Clin Invest. 1993 92:2408–2415.

    Article  PubMed  CAS  Google Scholar 

  42. Hughes SE, Crossman D, Hall PE. Expression of basic and acidic fibroblast growth factors and their receptors in normal and atherosclerotic human arteries. Cardiovasc Res. 1993;27:1214–1219.

    Article  PubMed  CAS  Google Scholar 

  43. Xin X, Johnson AD, Scott-Burden T, Engler D, Casscells W. The predominant form of fibroblast growth factor receptor expressed by proliferating human arterial smooth muscle cells in culture is type I. Biochem Biophys Res Commun. 1994;204:557–564.

    Article  PubMed  CAS  Google Scholar 

  44. Deindl E, Hoefer IE, Fernández B, Barancik M, Heil M, Strniskova M, Schaper W. Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis. Circ Res. 2003;92:561–568.

    Article  PubMed  CAS  Google Scholar 

  45. Volk R, Schwartz JJ, Li J, Rosenberg RD, Simons M. The role of syndecan cytoplasmic domain in basic fibroblast growth factor-dependent signal transduction. J Biol Chem. 1999;274:24417–24424.

    Article  PubMed  CAS  Google Scholar 

  46. Couchman RC, Woods A. Syndecan-4 and integrins: combinatorial in cell adhesion. J Cell Sci. 1999;112:3415–3420.

    PubMed  CAS  Google Scholar 

  47. Arras M, Strasser R, Mohri M, Doll R, Eckert P, Schaper W, Schaper J. Tumor necrosis factor-alpha is expressed by monocytes/macrophages following coronary microembolization and is antagonized by cyclosporine. Basic Res Cardiol. 1998;93:97–107.

    Article  PubMed  CAS  Google Scholar 

  48. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hind limb. J Clin Invest. 1997;101:40–50.

    Article  Google Scholar 

  49. Scholz D, Ito W, Fleming I, E. D, Sauer A, Wiesnet M, Busse R, Schaper J, Schaper W. Ultrastructure and molecular histology of rabbit hind limb collateral artery growth (arte-riogenesis). VirchowsArch. 2000;436:257–270.

    Article  CAS  Google Scholar 

  50. Rhoads DN, Eskin SG, Mcintire LV. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells. Arterioscler Thromb VascBiol. 2000;20:416–421.

    CAS  Google Scholar 

  51. Gloe T, Sohn HY, Meininger GA, Pohl U. Shear stress-induced release of basic fibroblast growth factor from endothelial cells Is mediated by matrix interaction via integrin alpha Vbeta 3. J Biol Chem. 2002;277:23453–23458.

    Article  PubMed  CAS  Google Scholar 

  52. Liekens S, Neyts J, Degréve B, De Clercq E. The sulfonic acid polymers PAMPS [Poly(2-Acrylamido-2-Methyl-1-Propanesulfonoc Acid)] and related analogons are highly potent inhibitors of angiogenesis. Oncology Res. 1997;9:173–181.

    CAS  Google Scholar 

  53. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res. 1997;80:829–837.

    PubMed  CAS  Google Scholar 

  54. Ueno H, Li J-J, Masuda S, Qi Z, Yamamoto H, Takeshita A. Adenovirus-mediated expression of the secreted form of basic fibroblast growth factor (FGF-2) induces cellular proliferation and angiogenesis in vivo. Arterioscler Thromb Vasc Biol. 1997;17:2453–2460.

    PubMed  CAS  Google Scholar 

  55. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y. Angiogenic synergism, vascular stability and improvement of hind limb ischemia by a combination pf PDGF-BB and FGF-2. NatMed. 2003

    Google Scholar 

  56. Srivastava S, Terjung RL, Yang HT. Basic fibroblast growth factor increases collateral blood flow in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2003;285:H1190–H1197.

    PubMed  CAS  Google Scholar 

  57. Shanahan CM, Cary NRB, Osbourn JK, Weissberg PL. Identification of osteoglycin as a component of the vascukar matrix. Differential expression during neointima formation and in atherosclerotic plaques. Arterioscler Thromb VascBiol. 1997;17:2437–2447.

    CAS  Google Scholar 

  58. Kampmann A, Fernández B, von der Ahe D, Schaper W, Zimmermann R. Changes in osteoglycin gene expression are linked to arteriogenesis. JMol Cell Cardiol. 2001;33:A55.

    Article  Google Scholar 

  59. Doukas J, Blease K, Craig D, Ma C, Chandler LA, Sosnowski BA, Pierce GF. Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. Mol Therapy. 2002;5:517–527.

    Article  CAS  Google Scholar 

  60. Coffin JD, Florkiewicz RZ, Neumann J, Mort-Hopkins T, Dorn II GW, Lightfoot P, German R, Howles PN, Kier A, O’Toole BA, Sasse J, Gonzalez AM, Baird A, Doetschman T. Abnormal bone growth and slective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. MolBiol Cell. 1995;6:1861–1873.

    CAS  Google Scholar 

  61. Fulgham DL, Widhalm SR, Martin S, Coffin JD. FGF-2 dependent angiogenesis is a latent phenotype in basic fibroblast growth factor transgenic mice. Endothelium. 1999;6:189–195.

    Article  Google Scholar 

  62. Stolen C, Jackson M, Griep A. Overexpression of FGF-2 modulates fiber cell differentiation and survival in the mouse lens. Development. 1997;124:4009–4017.

    PubMed  CAS  Google Scholar 

  63. Sheikh F, Sontag DP, Fandrich RR, Kardami E, Cattini PA. Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. Am J Physiol. 2001;280:H1039–H1050.

    CAS  Google Scholar 

  64. Dono R, Texido G, Dussel R, Ehmke H, Zeller R. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J. 1998;17:4213–4225.

    Article  PubMed  CAS  Google Scholar 

  65. Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci USA. 1998;95:5672–5677.

    Article  PubMed  CAS  Google Scholar 

  66. Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC, Yin M, Coffin JD, Kong L, Kranias EG, Luo W, Boivin GP, Duffy JJ, Pawlowski SA, Doetschman T. Fibroblast growth factor 2 control of vascular tone. Nat Med. 1998;4:201–207.

    Article  PubMed  CAS  Google Scholar 

  67. Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, Doetschman T, Coffin JD, Hurley MM. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest. 2000;105:1085–1093.

    Article  PubMed  CAS  Google Scholar 

  68. Okada Y, Montero A, Zhang X, Sobue T, Lorenzo J, Doetschman T, Coffin JD, Hurley MM. Impaired osteoclast formation in bone marrow cultures of FGF2 null mice in response to parathyroid hormone. J Biol Chem. 2003;278:21258–21266.

    Article  PubMed  CAS  Google Scholar 

  69. Foletti A, Ackermann J, Schmidt A, Hummler E, Beermann F. Absence of fibroblast growth factor 2 does not prevent tumor formation originating from the RPE. Oncogene. 2002;21:1841–1847.

    Article  PubMed  CAS  Google Scholar 

  70. Miller DL, Ortega S, Bashayan O, Basch R, Basilico C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol. 2000;20:2260–2268.

    Article  PubMed  CAS  Google Scholar 

  71. Hyer J, Johansen M, Prasad A, Wessels A, Kirby ML, Gourdie RG, Mikawa T. Induction of Purkinje fiber differentiation by coronary arterialization. Proc Natl Acad Sci USA. 1999;96:13214–13218.

    Article  PubMed  CAS  Google Scholar 

  72. Gourdie RG, Wei Y, Kim D, Klatt SC, Mikawa T. Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci USA. 1998;95:6815–6818.

    Article  PubMed  CAS  Google Scholar 

  73. Coleman-Krnacik S, Rosen J. Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Mol Endocrinol. 1994;8:218–229.

    Article  PubMed  CAS  Google Scholar 

  74. Costa M, Danesi R, Agen C, Di Paolo A, Basolo F, Del Bianchi S, Del Tacca M. MCF-10A cells infected with the int-2 oncogene induce angiogenesis in the chick chorioallantoic membrane and in the rat mesentery. Cancer Res. 1994;54:9–11.

    PubMed  CAS  Google Scholar 

  75. Deroanne C, Hajitou A, Calberg-Bacq C, Nusgens B, Lapiere C. Angiogenesis by fibroblast growth factor 4 is mediated through an autocrine up-regulation of vascular endothelial growth factor expression. Cancer Res. 1997;57:5590–5597.

    PubMed  CAS  Google Scholar 

  76. Mansour S, Goddard J, Capecchi M. Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development. 1993;117:13–28.

    PubMed  CAS  Google Scholar 

  77. Jung M, Kern F, Jorgensen T, Mcleskey S, Blair O, Dritschilo A. Fibroblast growth fac-tor-4 enhanced G2 arrest and cell survival following ionizing radiation. Cancer Res. 1994;54:5194–5197.

    PubMed  CAS  Google Scholar 

  78. Fujimoto J, Hori M, Ichigo S, Tamaya T. Expressions of the fibroblast growth factor family (FGF-1,-2 and-4) mRNA in endometrial cancers. Tumour Biol. 1996;17:226–233.

    PubMed  CAS  Google Scholar 

  79. Jouanneau J, Moens G, Montesano R, Thierry JP. FGF-1 but not FGF-4 secreted by carcinoma cells promotes in vitro and in vivo angiogenesis and rapid tumor proliferation. Growth Factors. 1995;12:37–47.

    Article  PubMed  CAS  Google Scholar 

  80. Partridge CR, Hawker Jr JR, Forough R. Overexpression of a secretory isoform of FGF-1 promotes MMP-1-mediated endothelial cell migration. J Cell Biochem. 2000;78:487–499.

    Article  PubMed  CAS  Google Scholar 

  81. Rissanen TT, Markkanen JE, Arve K, Rutanen J, Kettunen MI, Vajanto I, Jauhiainen S, Cashion L, Gruchala M, Narvanen O, Taipale P, Kauppinen RA, Rubanyi GM, Yla-Herttuala S. Fibroblast growth factor-4 induces vascular permeability, angiogenesis, and arteriogenesis in a rabbit hind limb ischemia model. FASEB J. 2002; FASEB J. 02-0377fje.

    Google Scholar 

  82. Feldman B, Poueymirou W, Papaioannou VE, Dechiara TM, Goldfarb M. Requirement of FGF-4 for postimplantation mouse development. Science. 1995;267:246–249.

    Article  PubMed  CAS  Google Scholar 

  83. Hébert JM, Rosenquist T, Goetz J, Martin GR. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell. 1994;78:1017–1025.

    Article  PubMed  Google Scholar 

  84. Giordano FJ, Ping P, Mckirnan MD, Nozaki S, Demaria AN, Dillmann WH, Mathieu-Costello O, Hammond HK. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. NatMed. 1996;2:534–539.

    CAS  Google Scholar 

  85. Schneeberger SA, Hjelmeland LM, Tucker RP, Morse LS. Vascular endothelial growth factor and fibroblast growth factor 5 are colacalized in vascular and avascular epiretinal membranes. Am J Ophthalmol. 1997;124:447–454.

    PubMed  CAS  Google Scholar 

  86. Pizette S, Batoz M, Prats H, Birnbaum D, Coulier F. Production and functional characterization of human recombinant FGF-6 protein. Cell Growth Differ. 1991;2:561–566.

    PubMed  CAS  Google Scholar 

  87. Scholz D, Ziegelhoeffer T, Helisch A, Wagnr S, Friedrich C, Podzuweit T, Schaper W. Contribution of arteriogenesis and angiogenesis to postocclusive hind limb perfusion in mice. J Mol Cell Cardiol. 2002;34:775–787.

    Article  PubMed  CAS  Google Scholar 

  88. Delapeyriere O, Ollendorff V, Planche J, Ott M, Pizette S, Coulier F, Birnbaum D. Expression of the FGF6 gene is restricted to developing skeletal muscle in the mouse embryo. Development. 1993;118:601–611.

    PubMed  CAS  Google Scholar 

  89. Floss T, Arnold H-H, Braun T. A role for FGF-6 in skeletal muscle regeneration. Genes Dev. 1997;11:2040–2051.

    Article  PubMed  CAS  Google Scholar 

  90. Fiore F, Planche J, Gibier P, Sebille A, Delapeyriere O, Birnbaum D. Apparent normal phenotype of FGF6-/- mice. IntJDev Biol. 1997;41:639–642.

    CAS  Google Scholar 

  91. Sharma B, Handler M, Eichstetter I, Whitelock JM, Nugent MA, Iozzo RV. Antisense Targeting of Perlecan Blocks Tumor Growth and Angiogenesis In Vivo. J Clin Invest. 1998;102:1599–1608.

    Article  PubMed  CAS  Google Scholar 

  92. Tilson MD, Fu C, Xia SX, Syn D, Yoon Y, McCaffrey T. Expression of molecular messages for angiogenesis by fibroblasts from aneurysmal abdominal aorta dermal fibroblasts. Int J Surg Investig. 2000;1:453–457.

    PubMed  CAS  Google Scholar 

  93. Werner S, Peters K, Longaker M, Fuller-Pace F, Banda M, Williams L. Large Induction of Keratinocyte Growth Factor Expression in the Dermis During Wound Healing. ProcNatl AcadSci USA. 1992;89:6896–6900.

    Article  CAS  Google Scholar 

  94. Guo L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev. 1996;10:165–175.

    Article  PubMed  CAS  Google Scholar 

  95. Mattila MMT, Ruohola JK, Valve EM, Tasanen MJ, Seppaenen JA, Haerkoenen PL. FGF-8b increases angiogenic capacity and tumor growth of androgen-regulated S115 breast cancer cells. Oncogene. 2001;20:2791–2804.

    Article  PubMed  CAS  Google Scholar 

  96. West AF, O’Donnell M, Charlton RG, Neal DE, Leung HY. Correlation of vascular endothelial growth factor expression with fibroblast growth factor-8 expression and clini-co-pathologic parameters in human prostate cancer. Br J Cancer. 2001;85:576–583.

    Article  PubMed  CAS  Google Scholar 

  97. Leung KH, Pipalla V, Kreutter A, Chandler M. Functional effects of FGF-13 on human lung fibroblasts, dermal microvascular endothelial cells, and aortic smooth muscle cells. Biochem Biphys Res Comm. 1998;250:137–142.

    Article  CAS  Google Scholar 

  98. Hu MC-T, Wang Y, Qiu WR. Human fibroblast growth factor-18 stimulates fibroblast cell proliferation and is mapped to chromosome 14p11. Oncogene. 1999;18:2635–2642.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Wolfgang Schaper Jutta Schaper

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Zimmermann, R. et al. (2004). Fibroblast Growth Factors. In: Schaper, W., Schaper, J. (eds) Arteriogenesis. Basic Science for the Cardiologist, vol 17. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8126-X_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8126-X_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8125-5

  • Online ISBN: 978-1-4020-8126-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics