Skip to main content

Nanometer Scale Technologies: Device Considerations

  • Chapter
  • 494 Accesses

Abstract

This chapter discusses the problems and challenges in scaling Silicon transistors in the nanotechnology era. The principle bottle necks to the scaling of Silicon devices have been discussed. In the latter half of this chapter, novel devices, particularly carbon nanotubes, have been introduced as possible alternatives to Silicon. The material properties, principal device characteristics and circuit issues relating to these revolutionary devices have been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2001 international technology roadmap for semiconductors. http://public.itrs.net/.

  2. R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, and R. Reifenberger. Science, 272:1323–1325, 1996.

    Google Scholar 

  3. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker. Logic circuits with carbon nanotube transistors. Science, 294:1317–1320, 2001.

    Article  Google Scholar 

  4. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer. Carbon nanotubes-the route toward applications. Science, 297:787, 2002.

    Article  Google Scholar 

  5. S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parameter variations and impact on circuits and microarchitecture. In Proceedings of Design Automation Conference, pages 338–342, June 2003.

    Google Scholar 

  6. J. Brews. High Speed Semiconductor Devices. John Wiley & Sons, New York, 1990.

    Google Scholar 

  7. P. J. Burke. Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Transactions on Nanotechnology, 1(3):129–144, September 2002.

    Article  Google Scholar 

  8. P.J. Burke. An RF circuit model for carbon nanotubes. IEEE Trans Nanotechnology, 2(1):55–58, March 2003.

    Article  Google Scholar 

  9. K. Cao, W.-C. Lee, W. Liu, X. Jin, P. Su, S. Fung, J. An, B. Yu, and C. Hu. Bsim4 gate leakage model including source drain partiotion. IEDM Technical Digest. Electron Devices Meeting, 2000.

    Google Scholar 

  10. J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour. Science, 286:1550–1552, 1999.

    Google Scholar 

  11. T. Chen and S. Naffziger. Comparison of adaptive body bias (abb) and adaptive supply voltage (asv) for improving delay and leakage under the presence of process variation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 11(5):888–899, October 2003.

    Article  Google Scholar 

  12. C.P Collier, G. Mattersteig, E.W. Young, Y Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, and J.R. Heath. Science, 289:1172–1175, 2000.

    Article  Google Scholar 

  13. S. Datta. Quantum transport: from Atom to Transistor. Cambridge Unievrsity Press, 2003.

    Google Scholar 

  14. V. De and S. Borkar. Technology and design challenges for low power and high performance. In Proc. of Intl. Symp. on Low Power Electronics and Design, pages 163–168, August 1999.

    Google Scholar 

  15. R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits, 1974.

    Google Scholar 

  16. M. Dresselhaus, G. Dresselhaus, and P. Avouris. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Springer-Verlag, New York, 2001.

    Google Scholar 

  17. M. Dresselhaus, G. Dresselhaus, and P. Eklund. Science of Fullerenes and Carbon Nanotubes. Academic Press, New York, 1996.

    Google Scholar 

  18. J. Guo et. al. Assessment of silicon mos and carbon nanotube fet performance limits using a general theory of ballistic transistors. Technical Digest IEDM, 2002.

    Google Scholar 

  19. K. Bowman et. al. Impact of die-to-die and within die parameter fluctuations on the clock frequency distribution in gigascale integration. Journal of Solid State Circuits, 37:183–190, 2002.

    Google Scholar 

  20. Lo et. al. Modeling and characterization of N/sup +/-and P/sup +/-polysilicon-gated ultra thin oxides (21–26 /spl aring/). Symposium on VLSI Technology, 1997.

    Google Scholar 

  21. R. Dennard et al. Design of ion-implanted mosfet’s with very small physical dimensions. IEEE J. Solid State Ckt., page 256, October 1974.

    Google Scholar 

  22. Vivek De et. al. Techniques for leakage power reduction. IEEE Press, Piscataway NJ, 2000.

    Google Scholar 

  23. D.J. Frank and J. Appenzeller. High-frequency response in carbon nanotube field-effect transistors. Electron Device Letters, 25(1):34–36, January 2004.

    Google Scholar 

  24. A.S. Grove. Physics and Technology of Semiconductor Devices. John Wiley & Sons, 1967.

    Google Scholar 

  25. Nathan P. Guisinger, Mark E. Greene, Rajiv Basu, Andrew S. Baluch, and Mark C. Hersam. Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett., 4(1):55–59, 2004.

    Article  Google Scholar 

  26. J. Guo, S. Goasguen, M. Lundstrom, and S. Datta. Metal-insulator-semiconductor electrostatics of carbon nanotubes. Appl. Phys. Lett., 81:1486, 2002.

    Google Scholar 

  27. J. Guo, M. Lundstrom, and S. Datta. Performance projections for ballistic carbon nanotube field-effect transistors. Appl. Phys. Lett., 80:3192, 2002.

    Google Scholar 

  28. S. Guo, S. Datta, and M. Lundstrom. A numerical study of scaling issues for schottky barrier carbon nanotube transistors. IEEE Transactions on Electron Devices, 51:172, February 2004.

    Google Scholar 

  29. F. Hamzaoglu and M. Stan. Circuit-level techniques to control gate leakage for sub-100 nm cmos. International Symposium on Low Power Design, 2002.

    Google Scholar 

  30. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris. Carbon nanotubes as schottky barrier transistors. Phys. Rev. Lett., 89:106801, 2002.

    Article  Google Scholar 

  31. S. Iijima. Helical microtubules of graphitic carbon. Nature, 354:56, 1991.

    Article  Google Scholar 

  32. S. Iijima and T. Ichilashi. Single-shell carbon nanotube of 1nm diameter. Nature, 363:603–605, 1993.

    Article  Google Scholar 

  33. J. Jacobs and D. Antoniadis. Channel profile engineering for mosfet’s with 100 nm channel lengths. IEEE Transactions on Electron Devices, 42:870–875, May 1995.

    Google Scholar 

  34. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai. High-field, quasi-ballistic transport in short carbon nanotubes. Physical Review Letters, 92:106804, 2004.

    Article  Google Scholar 

  35. A. Javey, J. Guo, and Q. Wang. Nanotechnology: A barrier falls. Nature, 424:654, 2003.

    Article  Google Scholar 

  36. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai. High dielectrics for advanced carbon nanotube transistors and logic. Nature Materials, 1:241, 2002.

    Article  Google Scholar 

  37. A. Javey, Q. Wang, A. Ural, Y. Li, and H. Dai. Carbon nanotube transistor arrays for multi-stage complementary logic and ring oscillators. Nano Lett., 2:929–932, 2002.

    Article  Google Scholar 

  38. A. Javey, Q. Wang, A. Ural, Y. Li, and H. Dai. Carbon nanotube transistor arrays for multi-stage complementary logic and ring oscillators. Nano Lett. 2, pages 929–932, 2002.

    Article  Google Scholar 

  39. Ji-Yong, Sami Rosenblatt, Yuval Yaish, Vera Sazonova, Hande üstünel, Stephan Braig, T. A. Arias, Piet W. Brouwer, and Paul L. McEuen. Electron-phonon scattering in metallic single-walled carbon nanotubes. cond-mat/0309641, September 2003.

    Google Scholar 

  40. Keshavarzi, K. Roy, and C. F. Hawkins. Intrinsic leakage in low power deep submicron cmosics. Int. Test Conf., pages 146–155, 1997.

    Google Scholar 

  41. W. Liang, M. Bockrath, and D. Bozovic. Nature, 411:665, 2001.

    Article  Google Scholar 

  42. W. Liang, M.P Shores, M. Bockrath, J.R. Long, and H. Park. Nature, 417:725–729, 2002.

    Article  Google Scholar 

  43. C. Mead. Scaling of MOS technology to submicrometer feature sizes. Analog Integ. Ckt. and Signal Process., 6:9–25, 1994.

    Google Scholar 

  44. R.M. Metzger and J. Mater. Chem., 10:55–62, 2000.

    Google Scholar 

  45. S. Mukhopadhyay, C. Neau, R.T. Cakici, A. Agarwal, C.H. Kim, and K. Roy. Gate leakage reduction for scaled devices using transistor stacking. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 11(4), August 2003.

    Google Scholar 

  46. S. Mukhopadhyay and K. Roy. Modeling and estimation of total leakage current in nano-scaled-CMOS devices considering the effect of parameter variation. In Proceedings of the 2003 International Symposium on ISLPED’ 03., pages 172–175, Aug 2003.

    Google Scholar 

  47. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, and D.C. Ralph. Nature, 417:722–725, 2002.

    Article  Google Scholar 

  48. R. Pierret. Semiconductor Device Fundamentals. Addison-Wesley, MA, 1996.

    Google Scholar 

  49. A. Raychowdhury, S. Makhopadhya, and K. Roy. Modeling of ballistic carbon nanotube field effect transistors for efficient circuit simulation. International Conference on Computer Aided Design, pages 487–490, November 2003.

    Google Scholar 

  50. M.A. Reed, C. Zhou, J. Muller T.P. Burgin, and J.M. Tour. Science, 278:252–254, 1997.

    Article  Google Scholar 

  51. K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. In Proceedings of the IEEE, volume 91, Feb 2003.

    Google Scholar 

  52. K. Roy and S. C. Prasad. Wiley Interscience Publications, New York, 2000.

    Google Scholar 

  53. G. Sery. Life in CMOS: Why chase life after that. Proceeding of Design Automation Conference, pages 78–83, June 2002.

    Google Scholar 

  54. Y. Taur. CMOS Scaling and Issues in sub-0.25?m Systems. IEEE Press, Piscataway NJ, 2000.

    Google Scholar 

  55. Y. Taur and T. H. Ning. Fundamentals of Modern VLSI Devices. Cambridge University Press, New York, 1998.

    Google Scholar 

  56. Thompson, P. Packan. and M. Bohr. Linear versus saturated drive current: tradeoffs in super steep retrograde well engineering. Symposium on VLSI Technology, pages 154–155, 1996.

    Google Scholar 

  57. S. Thompson, P. Packan, and M. Bohr. MOS scaling: Transistor challenges for the 21st century. Intel Technology Journal, 1998.

    Google Scholar 

  58. S. Venkatesan, J.W. Lutze, C. Lage, and W.J. Taylor. Device drive current degradation observed with retrograde channel profiles. International Electron Devices Meeting, pages 419–422, 1995.

    Google Scholar 

  59. S. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett., 80:3817–3819, 2002.

    Article  Google Scholar 

  60. N. Yang, W. Henson, and J. Hauser. Modelling study of ultrathin gate oxides using tunneling current and capacitance-voltage measurement in mos devices. IEEE Trans On Elec Dev, 46(7), july 1999.

    Google Scholar 

  61. Z. Yao, C. L. Kane, and C. Dekker. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett., 84:2941–2494, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Raychowdhury, A., Roy, K. (2004). Nanometer Scale Technologies: Device Considerations. In: Shukla, S.K., Bahar, R.I. (eds) Nano, Quantum and Molecular Computing. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8068-9_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8068-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8067-8

  • Online ISBN: 978-1-4020-8068-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics