Skip to main content

Microbial Risk Assessment for Drinking Water

  • Chapter

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 70))

Summary

Infectious microbes can be transmitted through the drinking water supply. Recent research indicates that infection transmission dynamics influence the public health benefit of water treatment interventions, although some risk assessments currently in use do not fully account for those dynamics. This chapter models the public health benefit of two interventions: improvements to centralized water treatment facilities, and localized point-of-use treatments in the homes of particularly susceptible individuals. A sensitivity analysis indicates that the best option is not as obvious as that suggested by an analysis that ignores infection dynamics suggests. Deterministic and stochastic dynamic systems models prove to be useful tools for assessing the dynamics of risk exposure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoxie, N.J., J.P Davis, J.M Vergeront, R. Nashold, and K. Blair (1997). Cryptosporidiosis-associated mortality following a massive waterborne outbreak in Milwaukee, Wisconsin. American Journal of Public Health, 87, 2032–2035.

    Article  PubMed  CAS  Google Scholar 

  2. MacKenzie, W.R., et al. (1994), A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. New England Journal of Medicine, 331, 161–167.

    Article  CAS  Google Scholar 

  3. Iley, K. (2002). Aid groups urge action on water-borne diseases. Reuters News Service at www.planetark.org, March 25.

    Google Scholar 

  4. Cowdy, H. (2002). Millions at risk from contaminated water. Reuters News Service at www.planetark.org, March 25.

    Google Scholar 

  5. Centers for Disease Control and Prevention (2001). Norwalk-like viruses: Public health consequences and outbreak management. Morbidity and Mortality Weekly Report, 50(RR-9), 1–17.

    Google Scholar 

  6. Cooke, R. and B. Kraan (2000). Processing expert judgements in accident consequence modelling. Radiation Protection Dosimetry, 90, 311–315.

    Google Scholar 

  7. Stewart, M.H., M.V. Yates, M.A. Anderson, C.P. Gerba, J.B. Rose, R. DeLeon, and R.L. Wolfe (2002). Predicted public health consequences of body-contact recreation on a potable water reservoir. Journal of the American Water Works Association, 94, 84–97.

    CAS  Google Scholar 

  8. Stout, J.E., Y-S E. Lin, A.M. Goetz, and R.R. Muder (1998). Controlling legionella in hospital water systems: Experience with the superheat-and-flush method and copper-silver ionization. Infection Control and Hospital Epidemiology, 19, 663–674.

    Article  Google Scholar 

  9. Current, W. (1994). Cryptosporidium parvum: Household transmission. Annals of Internal Medicine, 120, 518–519.

    PubMed  CAS  Google Scholar 

  10. Medema, G. and J. Schijven (2001). Modeling the sewage discharge and dispersion of Cryptosporidium and giardia in surface water. Water Research, 35, 4370–4316.

    Article  Google Scholar 

  11. Regli, S., J.B. Rose, C.N. Haas, and C.P. Gerba (1991). Modeling the risk from giardia and viruses in drinking water. Journal of the American Water Works Association, 83, 76–84.

    CAS  Google Scholar 

  12. International Life Sciences Institute (2000). Revised Framework for Microbial Risk Assessment. ILSI Risk Science Institute workshop report, International Life Sciences Institute, Washington, DC.

    Google Scholar 

  13. Eisenberg, J.E., E.Y.W. Seto, J.M. Colford Jr, A. Olivieri, and R.C. Spear (1998). An analysis of the Milwaukee Cryptosporidiosis outbreak based on a dynamic model of the infection process. Epidemiology, 9, 255–263.

    Article  PubMed  CAS  Google Scholar 

  14. Chick, S.E., J.S. Koopman, S. Soorapanth, and M. E. Brown (2001). Infection transmission system models for microbial risk assessment. Science of the Total Environment, 274, 197–207.

    Article  PubMed  CAS  Google Scholar 

  15. Frisby, H.R., D.G. Addiss, W.J. Reiser, et al. (1997). Clinical and epidemiologic features of a massive waterborne outbreak of WJ Cryptosporidiosis in persons with HIV infection. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 16, 367–373.

    PubMed  CAS  Google Scholar 

  16. Chick, S.E., J.S. Koopman, S. Soorapanth, and B.K. Boutin (2003). Inferring infection transmission parameters that influence water treatment decisions. Management Science, 49, 920–935.

    Article  Google Scholar 

  17. Brookhart, M.A., A.E. Hubbard, M.E. van der Laan, J.M. Colford, and J.N.S. Eisenberg (2002). Statistical estimation of parameters in a disease transmission model. Statistics in Medicine, 21, 3627–3638.

    Article  PubMed  Google Scholar 

  18. O’Neill, P.D. (2003). Perfect simulation for Reed-Frost epidemic models. Statistics and Computing, 13, 37–44.

    Article  MathSciNet  Google Scholar 

  19. Britton, T. and P.D. O’Neill (2002). Statistical inference for stochastic epidemics in populations with random social structure. Scandinavian Journal of Statistics, 29, 375–390.

    Article  MathSciNet  Google Scholar 

  20. Kurtz, T.G. (1970). Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability, 7, 49–58.

    Article  MATH  MathSciNet  Google Scholar 

  21. Kurtz, T.G. (1971). Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. Journal of Applied Probability, 8, 344–356.

    Article  MATH  MathSciNet  Google Scholar 

  22. Clancy, D. and N.P. French (2001). A stochastic model for disease transmission in a managed herd, motivated by Neospora caninum amongst dairy cattle. Mathematical Biosciences, 170, 113–132.

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  23. Pollett, P.K. (1990). On a model for interference between searching insect parasites. Journal of the Australian Mathematical Society, Series B, 31, 133–150.

    Article  MathSciNet  Google Scholar 

  24. Nold, A. (1980). Heterogeneity in disease-transmission modeling. Mathematical Biosciences, 52, 227–240.

    Article  MATH  MathSciNet  Google Scholar 

  25. Soorapanth, S. (2002). Microbial Risk Models Designed to Inform Water Treatment Policy Decisions. PhD Thesis, University of Michigan, Ann Arbor, MI.

    Google Scholar 

  26. Osewe, P., D.G. Addiss, K.A. Blair, A. Hightower, M.L. Kamb, and J.P. Davis (1996). Cryptosporidiosis in Wisconsin: A case-control study of post-outbreak transmission. Epidemiology and Infection, 117, 297–304.

    Article  PubMed  CAS  Google Scholar 

  27. Altmann, M. (1998). The deterministic limit of infectious disease models with dynamic partners. Mathematical Biosciences, 150, 153–175.

    Article  MATH  PubMed  CAS  Google Scholar 

  28. Nåsell, I. (1996). The quasi-stationary distribution of the closed endemic SIS Model. Advances in Applied Probability, 28, 895–932.

    Article  MATH  MathSciNet  Google Scholar 

  29. Chick, S.E. (2002). Approximations of stochastic epidemic models for parameter inference. Working Paper, INSEAD, Fontainbleau, France.

    Google Scholar 

  30. Koopman, J.S., S.E. Chick, C.S. Riolo, C.P. Simon, and J.A. Jacquez (2002). Stochastic effects on endemic infection levels of disseminating versus local contacts. Mathematical Biosciences, 180, 49–71.

    Article  PubMed  MathSciNet  Google Scholar 

  31. McNab, B.W. (1998). A general framework illustrating an approach to quantitative microbial food safety risk assessment. Journal of Food Protection, 61, 1216–1228.

    PubMed  CAS  Google Scholar 

  32. Ferguson, N.M., C.A. Donnelly, and R.M. Anderson (2001). The foot-and-mouth epidemic in Great Britain: Pattern of spread and impact of interventions. Science, 292, 1155–1160.

    Article  ADS  PubMed  CAS  Google Scholar 

  33. Simon, C.P. and J.A. Jacquez (1992). Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations. SIAM Journal of Applied Mathematics, 52, 541–576.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Chick, S.E., Soorapanth, S., Koopman, J.S. (2005). Microbial Risk Assessment for Drinking Water. In: Brandeau, M.L., Sainfort, F., Pierskalla, W.P. (eds) Operations Research and Health Care. International Series in Operations Research & Management Science, vol 70. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8066-2_18

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8066-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7629-9

  • Online ISBN: 978-1-4020-8066-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics