Skip to main content

New Insights into the Regulation of Complement Activation by Decay Accelerating Factor

  • Chapter
The Complement System

Abstract

Decay-accelerating factor (DAF), a ubiquitously expressed GPI-anchored protein, is an intrinsic regulator of complement activation that acts to dissociate autologous C3 and C5 convertases that assemble on self cells. DAF contains four ~60 amino acid long repeats termed short consensus repeats (SCRs) or complement control protein repeats (CCPs), followed by a serine/threonine (S/T)-rich region which in turn is attached to a posttranslationally-added glycosylphosphatidylinositol (GPI)-anchor. Studies with CCP deletion mutants showed that CCPs 2 and 3 are required for classical pathway (CP) function while CCP4 is additionally required for alternative pathway (AP) function. Mutagenesis studies based on a model built from the NMR structure of homologous CCPs indicated that positively charged amino acids (R69, R96, and R100 in CCP2, and K127 in the CCP2-CCP3 linker) and hydrophobic residues primarily in CCP3 (F148, F169, and L171) are important for DAF’s function in one or both pathways. A recent NMR solution structure of CCPs 2–3, the crystal structure of CCPs 3–4, and the crystal structure of all four CCPs have allowed mapping of the mutagenesis data on DAF’s 3D structure but have raised a controversy over the flexibility of its junctions, particularly CCPs 2–3, and the roles in function of certain amino acids, particularly the positively charged residues between CCPs 2 and 3. Work on DAF’s ligands indicates that DAF interacts with Y338A and Y327A residues in the von Willibrand factor type A (vWFA) domains of factor B and C2, respectively. Current work is proceeding toward understanding DAF’s role as a receptor for E. coli expressing AFA and Dr adhesions and certain picorna viruses. The recent availability of Daf1 knock-out mice has allowed studies of its in vivo function in diseases such as myasthenia gravis and autoimmune renal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, D. A., and Dimock, K. (2002). Sialic acid functions in enterovirus 70 binding and infection. J Virol 76, 11265–11272.

    CAS  PubMed  Google Scholar 

  2. Barlow, P. N., Norman, D. G., Steinkasserer, A., Horne, T. J., Pearce, J., Driscoll, P. C., Sim, R. B., and Campbell, I. D, (1992). Solution structure of the fifth repeat of factor H: a second example of the complement control protein module. Biochemistry 31, 3626–3634.

    Article  CAS  PubMed  Google Scholar 

  3. Barlow, P. N., Steinkasserer, A., Norman, D. G., Kieffer, B., Wiles, A. P., Sim, R. B., and Campbell, I. D. (1993). Solution structure of a pair of complement modules by nuclear magnetic resonance. Journal of Molecular Biology 232, 268–284.

    Article  CAS  PubMed  Google Scholar 

  4. Bentley, D. R. (1986). Primary structure of human complement component C2. Homology to two unrelated protein families. Biochem J 239, 339–345.

    CAS  PubMed  Google Scholar 

  5. Bernet-Camard, M. F., Coconnier, M. H., Hudault, S., and Servin, A. L. (1996). Pathogenicity of the diffusely adhering strain Escherichia coli C1845: F1845 adhesindecay accelerating factor interaction, brush border microvillus injury, and actin disassembly in cultured human intestinal epithelial cells. Infect Immun 64, 1918–1928.

    CAS  PubMed  Google Scholar 

  6. Betis, F., Brest, P., Hofman, V., Guignot, J., Kansau, I., Rossi, B., Servin, A., and Hofman, P. (2003). Afa/Dr diffusely adhering Escherichia coli infection in T84 cell monolayers induces increased neutrophil transepithelial migration, which in turn promotes cytokine-dependent upregulation of decay-accelerating factor (CD55), the receptor for Afa/Dr adhesins. Infect Immun 71, 1774–1783.

    CAS  PubMed  Google Scholar 

  7. Blom, A. M., Zadura, A. F., Villoutreix, B. O., and Dahlback, B, (2000). Positively charged amino acids at the interface between alpha-chain CCP1 and CCP2 of C4BP are required for regulation of the classical C3-convertase. Molec Immunol 37, 445–453.

    CAS  Google Scholar 

  8. Blomqvist, S., Savolainen, C., Raman, L., Roivainen, M., and Hovi, T. (2002). Human rhinovirus 87 and enterovirus 68 represent a unique serotype with rhinovirus and enterovirus features. J Clin Microbiol 40, 4218–4223.

    Article  PubMed  Google Scholar 

  9. Brodbeck, W. G., Kuttner-Kondo, L., Mold, C., and Medof, M. E. (2000a). Structure/function studies of human decay accelerating factor (DAF). Immunology 101, 104–111.

    Article  CAS  PubMed  Google Scholar 

  10. Brodbeck, W. G., Liu, D., Sperry, J., Mold, C., and Medof, M. E. (1996). Localization of classical and alternative pathway regulatory activity within the decay-accelerating factor. J Immunol 156, 2528–2533.

    CAS  PubMed  Google Scholar 

  11. Brodbeck, W. G., and Medof, M. E. (1997). Use of recombinant DAF proteins to localize the epitopes recognized by monoclonal anti-CD55. Transfusion Clinique et Biologique 4, 125–126.

    Article  CAS  PubMed  Google Scholar 

  12. Brodbeck, W. G., Mold, C., Atkinson, J. P., and Medof, M. E. (2000b). Cooperation between decay accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack. J Immunol 165, 3999–4006.

    CAS  PubMed  Google Scholar 

  13. Caras, I. W., Davitz, M. A., Rhee, L., Weddell, G., Martin, D. W., Jr, and Nussenzweig, V. (1987). Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 325, 545–549.

    Article  CAS  PubMed  Google Scholar 

  14. Coyne, K. E., Hall, S. E., Thompson, E. S., Arce, M. A., Kinoshita, T., Fujita, T., Anstee, D. J., Rosse, W., and Lublin, D. M. (1992). Mapping of epitopes, glycosylation sites, and complement regulatory domains in human decay accelerating factor. J Immunol 149, 2906–2913.

    CAS  PubMed  Google Scholar 

  15. Davitz, M. A., Low, M. G., and Nussenzweig, V. (1986). Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PI-PLC). J Exp Med 163, 1150–1161.

    Article  CAS  PubMed  Google Scholar 

  16. De Baets, M., Stassen, M., Losen, M., Zhang, X., and Machiels, B. (2003). Immunoregulation in experimental autoimmune myasthenia gravis—about T cells, antibodies, and endplates. Ann N Y Acad Sci 998, 308–317.

    PubMed  Google Scholar 

  17. Fearon, D. T., and Collins, L. A. (1983). Increased expression of C3b receptors on polymorphonuclear leukocytes induced by chemotactic factors and by purification procedures. J Immunol 130, 370–375.

    CAS  PubMed  Google Scholar 

  18. Fujita, T., Inoue, T., Ogawa, K., Iida, K., and Tamura, N. (1987). The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3 convertases by dissociated C2a and Bb. J Exp Med 166, 1221–1228.

    Article  CAS  PubMed  Google Scholar 

  19. Harada, R., Okada, N., Fujita, T., and Okada, H. (1990). Purification of 1F5 antigen that prevents complement attack on homologous cell membranes. J Immunol 144, 1823–1828.

    CAS  PubMed  Google Scholar 

  20. Hasan, R. J., Pawelczyk, E., Urvil, P. T., Venkatarajan, M. S., Goluszko, P., Kur, J., Selvarangan, R., Nowicki, S., Braun, W. A., and Nowicki, B. J. (2002). Structure-function analysis of decay-accelerating factor: identification of residues important for binding of the Escherichia coli Dr adhesin and complement regulation. Infect Immun 70, 4485–4493.

    CAS  PubMed  Google Scholar 

  21. Hinshelwood, J., and Perkins, S. J. (2000a). Conformational changes during the assembly of factor B from its domains by (1)H NMR spectroscopy and molecular modelling: their relevance to the regulation of factor B activity. J Mol Biol 301, 1267–1285.

    Article  CAS  PubMed  Google Scholar 

  22. Hinshelwood, J., and Perkins, S. J. (2000b). Metal-dependent conformational changes in a recombinant vWF-A domain from human factor B: a solution study by circular dichroism, fourier transform infrared and (1)H NMR spectroscopy. J Mol Biol 298, 135–147.

    Article  CAS  PubMed  Google Scholar 

  23. Hinshelwood, J., Spencer, D. I., Edwards, Y. J., and Perkins, S. J. (1999). Identification of the C3b binding site in a recombinant vWF-A domain of complement factor B by surface-enhanced laser desorption-ionisation affinity mass spectrometry and homology modelling: implications for the activity of factor B. J Mol Biol 294, 587–599.

    Article  CAS  PubMed  Google Scholar 

  24. Holguin, M. H., Fredrick, L. R., Bernshaw, N. J., Wilcox, L. A., and Parker, C. J. (1989). Isolation and characterization of a membrane protein from normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. Journal of Clinical Investigation 84, 7–17.

    CAS  PubMed  Google Scholar 

  25. Hourcade, D. E., Mitchell, L., Kuttner-Kondo, L. A., Atkinson, J. P., and Medof, M. E. (2002). Decay-accelerating factor (DAF), complement receptor 1 (CR1), and factor H dissociate the complement AP C3 convertase (C3bBb) via sites on the type A domain of Bb. J Biol Chem 277, 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  26. Hourcade, D. E., Mitchell, L. M., and Medof, M. E. (1999). Decay acceleration of the complement alternative pathway C3 convertase. Immunopharmacology 42, 167–173.

    Article  CAS  PubMed  Google Scholar 

  27. Jing, H., Xu, Y., Carson, M., Moore, D., Macon, K. J., Volanakis, J. E., and Narayana, S. V. (2000). New structural motifs on the chymotrypsin fold and their potential roles in complement factor B. Embo J 19, 164–173.

    Article  CAS  PubMed  Google Scholar 

  28. Karnauchow, T. M., Tolson, D. L., Harrison, B. A., Altman, E., Lublin, D. M., and Dimock, K. (1996). The HeLa cell receptor for enterovirus 70 is decay-accelerating factor (CD55). J Virol 70, 5143–5152.

    CAS  PubMed  Google Scholar 

  29. Kinoshita, T., Medof, M. E., and Nussenzweig, V. (1986). Endogenous association of decay-accelerating factor (DAF) with C4b and C3b on cell membranes. J Immunol 136, 3390–3395.

    CAS  PubMed  Google Scholar 

  30. Krych-Goldberg, M., Hauhart, R. E., Subramanian, V. B., Yurcisin, B. M., II, Crimmins, D. L., Hourcade, D. E., and Atkinson, J. P. (1999). Decay accelerating activity of complement receptor type 1 (CD35). Two active sites are required for dissociating C5 convertases. J Biol Chem 274, 31160–31168.

    Article  CAS  PubMed  Google Scholar 

  31. Kuttner-Kondo, L., M Dybvig, L Mitchell, N Muqim, JP Atkinson, ME Medof, D Hourcade (2003). A corresponding tyrosine residue in the C2/factor B type A domain is a hot spot in the decay acceleration of the complement C3 convertases. J Biological Chem 278, 52386–52391.

    CAS  Google Scholar 

  32. Kuttner-Kondo, L., Medof, M. E., Brodbeck, W., and Shoham, M. (1996). Molecular modeling and mechanism of action of human decay-accelerating factor. Protein Engineering 9, 1143–1149.

    CAS  PubMed  Google Scholar 

  33. Kuttner-Kondo, L. A., Mitchell, L., Hourcade, D. E., and Medof, M. E. (2001). Characterization of the active sites in decay-accelerating factor. J Immunol 167, 2164–2171.

    CAS  PubMed  Google Scholar 

  34. Lachmann, P. J. (1991). The control of homologous lysis. Immunol Today 12, 312–315.

    Article  CAS  PubMed  Google Scholar 

  35. Lin, F., Emancipator, S. N., Salant, D. J., and Medof, M. E. (2002a). Decay accelerating factor confers protection against complement-mediated podocyte injury in acute nephrotoxic nephritis. Lab Invest 82, 563–569.

    Article  CAS  PubMed  Google Scholar 

  36. Lin, F., Fukuoka, Y., Spicer, A., Ohta, R., Okada, N., Harris, C. L., Emancipator, S, N., and Medof, M. E. (2001). Tissue distribution of products of the mouse decay-accelerating factor (DAF) genes. Exploitation of a Daf1 knock-out mouse and site-specific monoclonal antibodies. Immunology 104, 215–225.

    Article  CAS  PubMed  Google Scholar 

  37. Lin, F., Kaminski, H. J., Conti-Fine, B. M., Wang, W., Richmonds, C., and Medof, M. E. (2002b). Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. J Clin Invest 110, 1269–1274.

    Article  CAS  PubMed  Google Scholar 

  38. Lin, F., Salant, D. J., Meyerson, H., Emancipator, S., Morgan, B. P., and Medof, M. E. (2004). Respective Roles of Decay-Accelerating Factor and CD59 in Circumventing Glomerular Injury in Acute Nephrotoxic Serum Nephritis. J Immunol 172, 2636–2642.

    CAS  PubMed  Google Scholar 

  39. Lukacik, P., Roversi, P., White, J., Esser, D., Smith, G. P., Billington, J., Williams, P. A., Rudd, P. M., Wormald, M. R., Harvey, D. J., et al. (2004). Complement regulation at the molecular level: The structure of decay-accelerating factor. Proc Natl Acad Sci U S A 101, 1279–1284.

    Article  CAS  PubMed  Google Scholar 

  40. Medof, M. E., Kinoshita, T., and Nussenzweig, V. (1984). Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 160, 1558–1578.

    Article  CAS  PubMed  Google Scholar 

  41. Medof, M. E., Lublin, D. M., Holers, V. M., Ayers, D. J., Getty, R. R., Leykam, J. F., Atkinson, J. P., and Tykocinski, M. L. (1987a). Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci U S A 84, 2007–2011.

    CAS  PubMed  Google Scholar 

  42. Medof, M. E., Walter, E. I., Roberts, W. L., Haas, R., and Rosenberry, T. L. (1986). Decay-accelerating factor of complement is anchored to cells by a C-terminal glycolipid. Biochemistry 25, 6740–6747.

    Article  CAS  PubMed  Google Scholar 

  43. Medof, M. E., Walter, E. I., Rutgers, J. L., Knowles, D. M., and Nussenzweig, V. (1987b). Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med 165, 848–864.

    Article  CAS  PubMed  Google Scholar 

  44. Meri, S., Morgan, B. P., Wing, M., Jones, J., Davies, A., Podack, E., and Lachmann, P. J. (1990). Human protectin (CD59), an 18-20-kD homologous complement restriction factor, does not restrict perforin-mediated lysis. J Exp Med 172, 367–370.

    Article  CAS  PubMed  Google Scholar 

  45. Miwa, T., Maldonado, M. A., Zhou, L., Sun, X., Luo, H. Y., Cai, D., Werth, V. P., Madaio, M. P., Eisenberg, R. A., and Song, W. C. (2002). Deletion of decay-accelerating factor (CD55) exacerbates autoimmune disease development in MRL/lpr mice. Am J Pathol 161, 1077–1086.

    CAS  PubMed  Google Scholar 

  46. Miwa, T., Sun X, Ohta R, Okada N, Harris CL, Morgan BP, Song WC (2001). Characterization of glycosylphophatidylinositol-anchored decay accelerating factor (GPIDAF) and transmembrane DAF gene expression in wild-type and GPI-DAF gene knockout mice using polyclonal and monoclonal antibodies with dual or single specificity. Immunology 104, 207–214.

    Article  CAS  PubMed  Google Scholar 

  47. Mole, J. E., Anderson, J. K., Davison, E. A., and Woods, D. E. (1984). Complete primary structure for the zymogen of human complement factor B. J Biol Chem 259, 3407–3412.

    CAS  PubMed  Google Scholar 

  48. Nagar, B., Jones, R. G., Diefenbach, R. J., Isenman, D. E., and Rini, J. M. (1998). X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2. Science 280, 1277–1281.

    Article  CAS  PubMed  Google Scholar 

  49. Newcombe, N. G., Johansson, E. S., Au, G., Lindberg, A. M., Barry, R. D., and Shafren, D. R. (2004). Enterovirus capsid interactions with decay-accelerating factor mediate lytic cell infection. J Virol 78, 1431–1439.

    CAS  PubMed  Google Scholar 

  50. Nicholson-Weller, A., Burge, J., Fearon, D. T., Weller, P. F., and Austen, K. F. (1982). Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol 129, 184–189.

    CAS  PubMed  Google Scholar 

  51. Norman, D. G., Barlow, P. N., Baron, M., Day, A. J., Sim, R. B., and Campbell, I. D. (1991). Three-dimensional structure of a complement control protein module in solution. Journal of Molecular Biology 219, 717–725.

    Article  CAS  PubMed  Google Scholar 

  52. Nowicki, B., Hart, A., Coyne, K. E., Lublin, D. M., and Nowicki, S. (1993). Short consensus repeat-3 domain of recombinant decay-accelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cell-cell interaction. J Exp Med 178, 2115–2121.

    Article  CAS  PubMed  Google Scholar 

  53. Nowicki, B., Labigne, A., Moseley, S., Hull, R., Hull, S., and Moulds. J. (1990). The Dr hemagglutinin, afimbrial adhesins AFA-I and AFA-III, and F1845 fimbriae of uropathogenic and diarrhea-associated Escherichia coli belong to a family of hemagglutinins with Dr receptor recognition. Infect Immun 58, 279–281.

    CAS  PubMed  Google Scholar 

  54. Nowicki, B., Selvarangan, R., and Nowicki, S. (2001). Family of Escherichia coli Dr adhesins: decay-accelerating factor receptor recognition and invasiveness. J Infect Dis 183Suppl 1, S24–27.

    PubMed  Google Scholar 

  55. Pangburn, M. K. (1986). Differences between the binding site of the complement regulatory proteins DAF, CR1 and factor H on C3 convertases. J Immunol 136, 2216–2221.

    CAS  PubMed  Google Scholar 

  56. Pangburn, M. K., Schreiber, R. D., and Muller-Eberhard, H. J. (1983a). Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci U S A 80, 5430–5434.

    CAS  PubMed  Google Scholar 

  57. Pangburn, M. K., Schreiber, R. D., Trombold, J. S., and Muller-Eberhard, H. J. (1983b). Paroxysmal nocturnal hemoglobinuria: deficiency in factor H-like functions of the abnormal erythrocytes. J Exp Med 157, 1971–1980.

    Article  CAS  PubMed  Google Scholar 

  58. Pham, T., Kaul, A., Hart, A., Golusko, P., Moulds, J., Nowicki, S., Lublin, D. M., and Nowicki, B. J. (1995). dra-related X adhesins of gestational pyelonephritis-associated Escherichia coli recognize SCR-3 and SCR-4 domains of recombinant decay-accelerating factor. Infection and Immunity 63, 1663–1668.

    CAS  PubMed  Google Scholar 

  59. Pham, T. Q., Goluszko, P., Popov, V., Nowicki, S., and Nowicki, B. J. (1997). Molecular cloning and characterization of Dr-II, a nonfimbrial adhesin-I-like adhesin isolated from gestational pyelonephritis-associated Escherichia coli that binds to decay-accelerating factor. Infect Immun 65, 4309–4318.

    CAS  PubMed  Google Scholar 

  60. Powell, R. M., Ward, T., Goodfellow, I., Almond, J. W., and Evans, D. J. (1999). Mapping the binding domains on decay accelerating factor (DAF) for haemagglutinating enteroviruses: implications for the evolution of a DAF-binding phenotype. Journal of General Virology 80, 3145–3152.

    CAS  PubMed  Google Scholar 

  61. Premkumar, D. R. D., Fukuoka, Y., Sevlever, D., Brunschwig, E., Rosenberry, T. R., Tykocinski, M. L., and Medof, M. E. (2001). Properties of exogenously added GPI-anchored proteins following their incorporation into cells. Journal of Cellular Biochemistry 82, 234–245.

    Article  CAS  PubMed  Google Scholar 

  62. Reid, K. B., and Day, A. J. (1989). Structure-function relationships of the complement components. Immunol Today 10, 177–180.

    CAS  PubMed  Google Scholar 

  63. Selvarangan, R., Goluszko, P., Popov, V., Singhal, J., Pham, T., Lublin, D. M., Nowicki, S., and Nowicki, B. (2000). Role of decay-accelerating factor domains and anchorage in internalization of Dr-fimbriated Escherichia coli. Infect Immun 68, 1391–1399.

    Article  CAS  PubMed  Google Scholar 

  64. Seya, T., and Atkinson, J. P. (1989). Functional properties of membrane cofactor protein of complement. Biochemical Journal 264, 581–588.

    CAS  PubMed  Google Scholar 

  65. Seya, T., Holers, V. M., and Atkinson, J. P. (1985). Purification and functional analysis of the polymorphic variants of the C3b/C4b receptor (CR1) and comparison with C4b-binding protein (C4bp), and decay accelerating factor (DAF). J Immunol 135, 2661–2667.

    CAS  PubMed  Google Scholar 

  66. Shafren, D. R., Bates, R. C., Agrez, M. V., Herd, R. L., Burns, G. F., and Barry, R. D. (1995). Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. Journal of Virology 69, 3873–3877.

    CAS  PubMed  Google Scholar 

  67. Shafren, D. R., Dorahy, D. J., Ingham, R. A., Burns, G. F., and Barry, R. D. (1997a). Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol 71, 4736–4743.

    CAS  PubMed  Google Scholar 

  68. Shafren, D. R., Williams, D. T., and Barry, R. D. (1997b). A decay-accelerating factorbinding strain of Coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells. J Virol 71, 9844–9848.

    CAS  PubMed  Google Scholar 

  69. Uhrinova, S., Lin, F., Ball, G., Bromek, K., Uhrin, D., Medof, M. E., and Barlow, P. N. (2003). Solution structure of a functionally active fragment of decay-accelerating factor. Proc Natl Acad Sci U S A 100, 4718–4723.

    Article  CAS  PubMed  Google Scholar 

  70. van den Berg, C. W., Cinek, T., Hallett, M. B., Horejsi, V., and Morgan, B. P. (1995). Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca2+-signaling competent. J Cell Biol 131, 669–677.

    PubMed  Google Scholar 

  71. van den Elsen, J. M., Martin, A., Wong, V., Clemenza, L., Rose, D. R., and Isenman, D. E. (2002). X-ray crystal structure of the C4d fragment of human complement component C4. J Mol Biol 322, 1103–1115.

    PubMed  Google Scholar 

  72. Walter, E. I., Ratnoff, W. D., Long, K. E., Kazura, J. W., and Medof, M. E. (1992). Effect of glycoinositolphospholipid anchor lipid groups on functional properties of decayaccelerating factor protein in cells. J Biol Chem 267, 1245–1252.

    CAS  PubMed  Google Scholar 

  73. Walter, E. I., Roberts, W. L., Rosenberry, T. L., Ratnoff, W. D., and Medof, M. E. (1990). Structural basis for variations in the sensitivity of human decay accelerating factor to phosphatidylinositol-specific phospholipase C cleavage. J Immunol 144, 1030–1036

    CAS  PubMed  Google Scholar 

  74. Ward, T., Pipkin, P. A., Clarkson, N. A., Stone, D. M., Minor, P. D., and Almond, J. W. (1994). Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. Embo J 13, 5070–5074.

    CAS  PubMed  Google Scholar 

  75. Williams, P., Chaudhry, Y., Goodfellow, I. G., Billington, J., Powell, R., Spiller, O. B., Evans, D. J., and Lea, S. (2003). Mapping CD55 function. The structure of two pathogen-binding domains at 1.7 A. J Biol Chem 278, 10691–10696.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Kuttner-Kondo, L., Medof, E.M. (2004). New Insights into the Regulation of Complement Activation by Decay Accelerating Factor. In: Szebeni, J. (eds) The Complement System. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8056-5_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8056-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8055-5

  • Online ISBN: 978-1-4020-8056-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics