Skip to main content

The Use of Somatostatin Analogues in Diabetic Retinopathy

  • Chapter
Somatostatin

Part of the book series: Endocrine Updates ((ENDO,volume 24))

  • 159 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klein R, Klein BE, Moss SE. Relation of glycemie control to diabetic microvascular complications in diabetes mellitus. Ann Intern Med. 1996; 124: 90–96.

    CAS  PubMed  Google Scholar 

  2. Klein R, Klein BE, Moss SE. The Wisconsin epidemiological study of diabetic retinopathy: a review. Diabetes Metab Rev. 1989; 5: 559–570.

    CAS  PubMed  Google Scholar 

  3. Albini A, Florio T, Giunciuglio D, Masiello L, Carlone S, Corsaro A, Thellung S, Cai T, Noonan DM, Schettini G. Somatostatin controls Kaposi’s sarcoma tumor growth through inhibition of angiogenesis. Faseb J. 1999; 13: 647–655.

    CAS  PubMed  Google Scholar 

  4. Cattaneo MG, Amoroso D, Gussoni G, Sanguini AM, Vicentini LM. A somatostatin analogue inhibits MAP kinase activation and cell proliferation in human neuroblastoma and in human small cell lung carcinoma cell lines. FEBS Lett. 1996; 397: 164–168.

    Article  CAS  PubMed  Google Scholar 

  5. Charland S, Boucher MJ, Houde M, Rivard N. Somatostatin inhibits Akt phosphorylation and cell cycle entry, but not p42/p44 mitogen-activated protein (MAP) kinase activation in normal and tumoral pancreatic acinar cells. Endocrinology. 2001; 142: 121–128.

    Article  CAS  PubMed  Google Scholar 

  6. Lawnicka H, Stepien H, Wyczolkowska J, Kolago B, Kunert-Radek J, Komorowski J. Effect of somatostatin and octreotide on proliferation and vascular endothelial growth factor secretion from murine endothelial cell line (HECa10) culture. Biochem Biophys Res Commun. 2000; 268: 567–571.

    Article  CAS  PubMed  Google Scholar 

  7. Danesi R, Del Tacca M. The effects of the somatostatin analog octreotide on angiogenesis in vitro. Metabolism. 1996; 45: 49–50.

    Article  CAS  PubMed  Google Scholar 

  8. Lee HK, Suh KI, Koh CS, Min HK, Lee JH, Chung H. Effect of SMS 201-995 in rapidly progressive diabetic retinopathy [letter]. Diabetes Care. 1988; 11: 441–443.

    CAS  PubMed  Google Scholar 

  9. McCombe M, Lightman S, Eckland DJ, Hamilton AM, Lightman SL. Effect of a long-acting somatostatin analogue (BIM23014) on proliferative diabetic retinopathy: a pilot study. Eye. 1991; 5: 569–575.

    PubMed  Google Scholar 

  10. Mallet B, Vialettes B, Haroche S, Escoffier P, Gastaut P, Taubert JP, Vague P. Stabilization of severe proliferative diabetic retinopathy by long-term treatment with SMS 201-995. Diabetes Metab. 1992; 18: 438–444.

    CAS  Google Scholar 

  11. Grant MB, Mames RN, Fitzgerald C, Hazariwala KM, Cooper-DeHoff R, Caballero S, Estes KS. The efficacy of octreotide in the therapy of severe nonproliferative and early proliferative diabetic retinopathy: a randomized controlled study. Diabetes Care. 2000; 23: in press.

    Google Scholar 

  12. Smith LE, Kopchick JJ, Chen W, Knapp J, Kinose F, Daley D, Foley E, Smith RG, Schaeffer JM. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science. 1997; 276: 1706–1709.

    CAS  PubMed  Google Scholar 

  13. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973; 179: 77–79.

    CAS  PubMed  Google Scholar 

  14. Patterson RH, Jr. Hypophysectomy: transfrontal technique and results in the management of metastatic cancer and diabetic retinopathy. Clin Neurosurg. 1974; 21: 60–67.

    PubMed  Google Scholar 

  15. Arslan M. Ultrasonic selective hypophysectomy in Cushing’s disease, acromegaly and diabetic retinopathy. Acta Otolaryngol. 1967; 63: 252–263.

    CAS  PubMed  Google Scholar 

  16. Kirkegaard C, Norgaard K, Snorgaard O, Bek T, Larsen M, Lund-Andersen H. Effect of one year continuous subcutaneous infusion of a somatostatin analogue, octreotide, on early retinopathy, metabolic control and thyroid function in Type I (insulin-dependent) diabetes mellitus. Acta Endocrinol (Copenh). 1990; 122: 766–772.

    CAS  Google Scholar 

  17. de los Frailes MT, Cacicedo L, Lorenzo MJ, Fernandez G, Sanchez-Franco F. Thyroid hormone action on biosynthesis of somatostatin by fetal rat brain cells in culture. Endocrinology. 1988; 123: 898–904.

    PubMed  Google Scholar 

  18. Lam KS, Wong RL. Thyroid hormones regulate the expression of somatostatin receptor subtypes in the rat pituitary. Neuroendocrinology. 1999; 69: 460–464.

    Article  CAS  PubMed  Google Scholar 

  19. Merimee TJ, Zapf J, Froesch ER. Insulin-like growth factors: studies in diabetics with and without retinopathy. N Engl J Med. 1983; 309: 527–530.

    CAS  PubMed  Google Scholar 

  20. Spranger J, Buhnen J, Jansen V, Krieg M, Meyer-Schwickerath R, Blum WF, Schatz H, Pfeiffer AF. Systemic levels contribute significantly to increased intraocular IGF-I, IGF-II and IGF-BP3 [correction of IFG-BP3] in proliferative diabetic retinopathy. Harm Metab Res. 2000; 32: 196–200.

    CAS  Google Scholar 

  21. Hyer SL, Sharp PS, Brooks RA, Burrin JM, Kohner EM. A two-year follow-up study of serum insulinlike growth factor-I in diabetics with retinopathy. Metabolism. 1989; 38: 586–589.

    Article  CAS  PubMed  Google Scholar 

  22. Janssen JA, Lamberts SW. Circulating IGF-I and its protective role in the pathogenesis of diabetic angiopathy. Clin Endocrinol (Oxf). 2000; 52: 1–9.

    Article  CAS  Google Scholar 

  23. Ballintine EJ, Foxman S, Gorden P, Roth J. Rarity of diabetic retinopathy in patients with acromegaly. Arch Intern Med. 1981; 141: 1625–1627.

    Article  CAS  PubMed  Google Scholar 

  24. Amemiya T, Toibana M, Hashimoto M, Oseko F, Imura H. Diabetic retinopathy in acromegaly. Ophthalmologica. 1978; 176: 74–80.

    CAS  PubMed  Google Scholar 

  25. Smith LE, Shen W, Perruzzi C, Soker S, Kinose F, Xu X, Robinson G, Driver S, Bischoff J, Zhang B, Schaeffer JM, Senger DR. Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med. 1999; 5: 1390–1395.

    Article  CAS  PubMed  Google Scholar 

  26. Rohrer SP, Birzin ET, Mosley RT, Berk SC, Hutchins SM, Shen DM, Xiong Y, Hayes EC, Parmar RM, Foor F, Mitra SW, Degrado SJ, Shu M, Klopp JM, Cai SJ, Blake A, Chan WW, Pasternak A, Yang L, Patchett AA, Smith RG, Chapman KT, Schaeffer JM. Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry [published erratum appears in Science 1998 Nov 27;282(5394):1646]. Science. 1998; 282: 737–740.

    Article  CAS  PubMed  Google Scholar 

  27. Gillespie TJ, Erenberg A, Kim S, Dong J, Taylor JE, Hau V, Davis TP. Novel somatostatin analogs for the treatment of acromegaly and cancer exhibit improved in vivo stability and distribution. J Pharmacol Exp Ther. 1998; 285: 95–104.

    CAS  PubMed  Google Scholar 

  28. Tejeda M, Gaal D, Schwab RE, Pap A, Szuts T, Keri G. Influence of various administration routes on the antitumor efficacy of TT-232, a novel somatostatin analog. Anticancer Res. 2000; 20: 1023–1027.

    CAS  PubMed  Google Scholar 

  29. Teplan I. Peptides and antitumor activity. Development and investigation of some peptides with antitumor activity. Acta Biol Hung. 2000; 51: 1–29.

    CAS  PubMed  Google Scholar 

  30. Parmar RM, Chan WW, Dashkevicz M, Hayes EC, Rohrer SP, Smith RG, Schaeffer JM, Blake AD. Nonpeptidyl somatostatin agonists demonstrate that sst2 and sst5 inhibit stimulated growth hormone secretion from rat anterior pituitary cells. Biochem Biophys Res Commun. 1999; 263: 276–280.

    Article  CAS  PubMed  Google Scholar 

  31. Cattaneo MG, Scita G, Vicentini LM. Somatostatin inhibits PDGF-stimulated Ras activation in human neuroblastoma cells. FEBS Lett. 1999; 459: 64–68.

    Article  CAS  PubMed  Google Scholar 

  32. Paques M, Massin P, Gaudric A. Growth factors and diabetic retinopathy. Diabetes Metab. 1997; 23: 125–130.

    CAS  PubMed  Google Scholar 

  33. Grant MB, Caballero S, Millard WJ. Inhibition of IGF-I and b-FGF stimulated growth of human retinal endothelial cells by the somatostatin analogue, octreotide: a potential treatment for ocular neovascularization. Regul Pept. 1993; 48: 267–278.

    Article  CAS  PubMed  Google Scholar 

  34. Burghardt B, Barabas K, Marcsek Z, Flautner L, Gress TM, Varga G. Inhibitory effect of a long-acting somatostatin analogue on EGF-stimulated cell proliferation in Capan-2 cells. J Physiol Paris. 2000; 94: 57–62.

    CAS  PubMed  Google Scholar 

  35. Wilson SH, Davis MI, Caballero S, Grant MB. Modulation of retinal endothelial cell behavior by somatostatin analogues: implications for diabetic retinopathy. in Growth Hormone and IGF Research. 2001. Monte Carlo, Monaco: Oxford Clinical Communications.

    Google Scholar 

  36. Bruno JF, Xu Y, Song J, Berelowitz M. Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc Natl Acad Sci USA. 1992; 89: 11151–11155.

    CAS  PubMed  Google Scholar 

  37. Law SF, Manning D, Reisine T. Identification of the subunits of GTP-binding proteins coupled to somatostatin receptors. J Biol Chem. 1991; 266: 17885–17897.

    CAS  PubMed  Google Scholar 

  38. Patel PC, Barrie R, Hill N, Landeck S, Kurozawa D, Woltering EA. Postreceptor signal transduction mechanisms involved in octreotide-induced inhibition of angiogenesis. Surgery. 1994; 116: 1148–1152.

    CAS  PubMed  Google Scholar 

  39. Medina DL, Toro MJ, Santisteban P. Somatostatin interferes with thyrotropin-induced Gl-S transition mediated by cAMP-dependent protein kinase and phosphatidylinositol 3-kinase. Involvement of RhoA and cyclin E x cyclin-dependent kinase 2 complexes. J Biol Chem. 2000; 275: 15549–15556.

    CAS  PubMed  Google Scholar 

  40. Thangaraju M, Sharma K, Leber B, Andrews DW, Shen SH, Srikant CB. Regulation of acidification and apoptosis by SHP-1 and Bcl-2. J Biol Chem. 1999; 274: 29549–29557.

    Article  CAS  PubMed  Google Scholar 

  41. Florio T, Thellung S, Arena S, Corsaro A, Bajetto A, Schettini G, Stork PJ. Somatostatin receptor 1 (SSTRl)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2. J Physiol Paris. 2000; 94: 239–250.

    CAS  PubMed  Google Scholar 

  42. Reardon DB, Dent P, Wood SL, Kong T, Sturgill TW. Activation in vitro of somatostatin receptor subtypes 2, 3, or 4 stimulates protein tyrosine phosphatase activity in membranes from transfected Ras-transformed NIH 3T3 cells: coexpression with catalytically inactive SHP-2 blocks responsiveness. Mol Endocrinol. 1997; 11: 1062–1069.

    Article  CAS  PubMed  Google Scholar 

  43. Pages P, Benali N, Saint-Laurent N, Esteve JP, Schally AV, Tkaczuk J, Vaysse N, Susini C, Buscail L. sst2 somatostatin receptor mediates cell cycle arrest and induction of p27(Kip1). Evidence for the role of SHP-1. J Biol Chem. 1999; 274: 15186–15193.

    Article  CAS  PubMed  Google Scholar 

  44. Srikant CB. Cell cycle dependent induction of apoptosis by somatostatin analog SMS 201-995 in AtT-20 mouse pituitary cells. Biochem Biophys Res Commun. 1995; 209: 400–406.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma K, Patel YC, Srikant CB. Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3. Mol Endocrinol. 1996; 10: 1688–1696.

    Article  CAS  PubMed  Google Scholar 

  46. Sharma K, Srikant CB. Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. Int J Cancer. 1998; 76: 259–266.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Smith, L.E.H., Grant, M.B. (2004). The Use of Somatostatin Analogues in Diabetic Retinopathy. In: Srikant, C.B. (eds) Somatostatin. Endocrine Updates, vol 24. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8033-6_18

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8033-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7799-9

  • Online ISBN: 978-1-4020-8033-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics