Skip to main content

Photoresponse Analysis and Pixel Shape Optimization for CMOS APS

  • Chapter
CMOS Imagers

Abstract

A semi-analytical model has been developed for the estimation of the photoresponse of a photodiode-based CMOS active pixel sensor (APS). This model, based on a thorough analysis of experimental data, incorporates the effects of substrate diffusion as well as geometrical shape and size of the photodiode active area. It describes the dependence of pixel response on integration photocarriers and on conversion gain. The model also demonstrates that the tradeoff between these two conflicting factors gives rise to an optimum geometry, enabling the extraction of a maximum photoresponse. The dependence of the parameters on the process and design data is discussed, and the degree of accuracy for the photoresponse modeling is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. O. Yadid-Pecht, B. Mansoorian, E. Fossum, and B. Pain, “Optimization of active pixel sensor noise and responsivity for scientific applications,” in Proc. IS&T/SPIE Symp. Electronic Imaging: Science and Technology, San Jose, California, Feb. 1997.

    Google Scholar 

  2. O. Yadid-Pecht, R. Ginosar, and Y. Shacham-Diamand, “A random access photodiode array for intelligent image capture,” IEEE Trans. Electron Devices, vol. 38, no. 8, pp. 1772–1781, Aug. 1991.

    Article  Google Scholar 

  3. E. Fossum, “Digital camera system on a chip,” IEEE Micro, vol. 18, no. 3, pp. 8–15, May–June 1998.

    Article  Google Scholar 

  4. H. Wong, “Technology and device scaling considerations for CMOS imagers,” IEEE Trans. Electron Devices, vol. 43, no. 12, pp. 2131–2142, Dec. 1996.

    Google Scholar 

  5. O. Yadid-Pecht, “CMOS imagers,” course notes, Ben-Gurion University, Beer-Sheva, Israel, 2000.

    Google Scholar 

  6. A. Moini, “Vision chips or seeing silicon: technical report,” Centre for High Performance Integrated Technologies and Systems, University of Adelaide, Mar. 1997. Available: www.eleceng.adelaide.edu.au/Groups/GAAS/Bugeye/visionchips/index.html

    Google Scholar 

  7. J. Hynecek, “BCMD — An improved photosite structure for high-density image sensors,” IEEE Trans. Electron Devices, vol. 38, ED-5, pp. 1011–1020, May 1991.

    Google Scholar 

  8. K. Matsumoto, I. Takayanagi, T. Nakamura, and R. Ohta, “The operation mechanism of a charge modulation device (CMD) image sensor,” IEEE Trans. Electron Devices, vol. 38, ED-5, pp. 989–998, May 1991.

    Google Scholar 

  9. S. Mendis, S. Kemeny, R. Gee, B. Pain, C. Staller, Q. Kim, and E. Fossum, “CMOS active pixel image sensors for highly integrated imaging systems,” IEEE J. Solid State Circuits, vol. 32, pp. 187–197, Feb. 1997.

    Google Scholar 

  10. P. Magnan, A. Gautrand, Y. Degerli, C. Marques, F. Lavernhe, C. Cavadore, F. Corbiere, J. Farre, O. Saint-Pe, M. Tulet, and R. Davancens, “Influence of pixel topology on performances of CMOS APS imagers,” Proc. SPIE, vol. 3965, 2000.

    Google Scholar 

  11. J. Bogaerts and B. Dierickx, “Total dose effects on CMOS active pixel sensors,” Proc. SPIE, vol. 3965, pp. 157–167, 2000.

    Google Scholar 

  12. H. Tian, B. Fowler, and A. El-Gamal, “Analysis of temporal noise in CMOS photodiode active pixel sensor,” IEEE J. Solid State Circuits, vol. 36, pp. 92–100, Jan. 2001.

    Google Scholar 

  13. H. Tian, X. Liu, S.H. Lim, S. Kleinfelder, and A. El-Gamal, “Active pixel sensors fabricated in a standard 0.18 μm CMOS technology,” Proc. SPIE, vol. 4306, pp. 441–449, 2001.

    Google Scholar 

  14. J. P. Lavine, E. A. Trabka, B. C. Burkey, T. J. Tredwell, E. T. Nelson, and C. N. Anagnosyopoulos, “Steady-state photocarrier collection in silicon imaging devices,” IEEE Trans. Electron Devices, vol. 30, ED-9, pp. 1123–1134, Sept. 1983.

    Google Scholar 

  15. D. Kavaldjiev and Z. Ninkov, “Subpixel sensitivity map for a charge coupled device sensor,” Opt. Eng., vol. 37, no. 3, pp. 948–954, Mar. 1998.

    Article  Google Scholar 

  16. J. S. Lee and R. I. Hornsey, “Photoresponse of photodiode arrays for solid-state image sensors,” J. Vacuum Sci. Technol., vol. 18, no. 2, pp. 621–625, Mar. 2000.

    Google Scholar 

  17. I. Shcherback and O. Yadid-Pecht, “CMOS APS MTF modeling,” IEEE Trans. Electron Devices, vol. 48, ED-12, pp. 2710–2715, Dec. 2001.

    Google Scholar 

  18. J. Tandon, D. Roulston, and S. Chamberlain, “Reverse-bias characteristics of a P+-N-N+ photodiode,” Solid-State Electron., vol. 15, pp. 669–685, Jun. 1972.

    Google Scholar 

  19. S. G. Chamberlain and D. H. Harper, “MTF simulation including transmittance effects of CCD,” IEEE Trans. Electron Devices, vol. 25, ED-2, pp. 145–154, 1978.

    Google Scholar 

  20. R. Stern, L. Shing, and M. Blouke, “Quantum efficiency measurements and modeling of ion-implanted, laser-annealed charge-coupled devices: X-ray, extreme ultraviolet, ultraviolet, and optical data,” Appl. Opt., vol. 33, no. 13, pp. 2521–2533, May 1994.

    Google Scholar 

  21. I. Shcherback and O. Yadid-Pecht, “CMOS APS MTF Modeling,” IEEE Trans. Electron Devices, vol. 48, ED-12, pp. 2710–2715, Dec. 2001.

    Google Scholar 

  22. B. Fowler, A. El-Gamal, D. Yang, and H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” Proc. SPIE, vol. 3301, pp. 178–185, 1998.

    Google Scholar 

  23. P. B. Catrysse, X. Liu, and A. El-Gamal, “QE reduction due to pixel vignetting in CMOS image sensors,” Proc. SPIE, vol. 3965, pp. 420–430, 2000.

    Google Scholar 

  24. O. Yadid-Pecht, “The geometrical modulation transfer function (MTF) for different pixel active area shapes,” Opt. Eng., vol. 39, no. 4, pp. 859–865, 2000.

    Article  Google Scholar 

  25. D. Ramey and J. T. Boyd, “Computer simulation of optical crosstalk in linear imaging arrays,” IEEE J. Quantum Electron., vol. 17, pp. 553–556, Apr. 1981.

    Google Scholar 

  26. T. Lule, S. Benthien, H. Keller, F. Mutze, P. Rieve, K. Seibel, M. Sommer, and M. Bohm, “Sensitivity of CMOS-based imagers and scaling perspectives,” IEEE Trans. Electron Devices, vol. 47, ED-11, pp. 2710–2722, Nov. 2000.

    Google Scholar 

  27. H. Wong, “Technology and device scaling considerations for CMOS imagers,” IEEE Trans. Electron Devices, vol. 43, no. 12, pp. 2131–2142, Dec. 1996.

    Google Scholar 

  28. I. Shcherback and O. Yadid-Pecht, “Photoresponse analysis and pixel shape optimization for CMOS active pixel sensors,” IEEE Trans. Electron Devices (Special Issue on Image Sensors), vol. 50, pp. 12–19, Jan. 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Shcherback, I., Yadid-Pecht, O. (2004). Photoresponse Analysis and Pixel Shape Optimization for CMOS APS. In: Yadid-Pecht, O., Etienne-Cummings, R. (eds) CMOS Imagers. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7962-1_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7962-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7961-0

  • Online ISBN: 978-1-4020-7962-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics