Skip to main content

Regulation of Cardiac Remodeling by Nitric Oxide: Focus on Cardiac Myocyte Hypertrophy and Apoptosis

  • Chapter
Book cover The Role of Nitric Oxide in Heart Failure

Abstract

Cardiac hypertrophy occurs in pathological conditions associated with chronic increases in hemodynamic load. Although hypertrophy can initially be viewed as a salutary response, ultimately, it often enters a phase of pathological remodeling that may lead to heart failure and premature death. A prevailing concept predicts that changes in gene expression in hypertrophied cardiac myocytes and cardiac myocyte loss by apoptosis contribute to the transition from hypertrophy to failure. In recent years, nitric oxide (NO) has emerged as an important regulator of cardiac remodeling. Specifically, NO has been recognized as a potent antihypertrophic and proapoptotic mediator in cultured cardiac myocytes. Studies in genetically engineered mice have extended these findings to the in vivo situation. It appears that low levels and transient release of NO by endothelial NO synthase exert beneficial effects on the remodeling process by reducing cardiac myocyte hypertrophy, cavity dilation and mortality. By contrast, high levels and sustained production of NO by inducible NO synthase seem to be maladaptive by reducing ventricular contractile function, and increasing cardiac myocyte apoptosis, and mortality. In the future, these novel insights into the role of NO in cardiac remodeling should allow the development of novel therapeutic strategies to treat cardiac remodeling and failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balligand JL, Cannon PJ. Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol 1997;17:1846–1858.

    CAS  PubMed  Google Scholar 

  2. Drexler H. Nitric oxide synthases in the failing human heart: A doubled-edged sword? Circulation 1999;99:2972–2975.

    CAS  PubMed  Google Scholar 

  3. Braunwald E, Bristow MR. Congestive heart failure: Fifty years of progress. Circulation 2000;102(IV):14–23.

    Google Scholar 

  4. Lorell BH, Carabello BA. Left ventricular hypertrophy: Pathogenesis, detection, and prognosis. Circulation 2000;102:470–479.

    CAS  PubMed  Google Scholar 

  5. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561–1566.

    CAS  PubMed  Google Scholar 

  6. Krumholz HM, Larson M, Levy D. Prognosis of left ventricular geometric patterns in the Framingham Heart Study. J Am Coll Cardiol 1995;25:879–884.

    Article  CAS  PubMed  Google Scholar 

  7. Molkentin JD, Dorn IG. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 2001;63:391–426.

    Article  CAS  PubMed  Google Scholar 

  8. Matsuoka H, Nakata M, Kohno K, Koga Y, Nomura G, Toshima H, Imaizumi T. Chronic L-arginine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats. Hypertension 1996;27:14–18.

    CAS  PubMed  Google Scholar 

  9. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 1998;101:812–818.

    CAS  PubMed  Google Scholar 

  10. Ritchie RH, Schiebinger RJ, LaPointe MC, Marsh JD. Angiotensin II-induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide. Am J Physiol 1998;275:H1370–H1374.

    CAS  PubMed  Google Scholar 

  11. Lohmann SM, Vaandrager AB, Smolenski A, Walter U, De Jonge HR. Distinct and specific functions of cGMP-dependent protein kinases. Trends Biochem Sci 1997;22:307–312.

    Article  CAS  PubMed  Google Scholar 

  12. Mery PF, Lohmann SM, Walter U, Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 1991;88:1197–1201.

    CAS  PubMed  Google Scholar 

  13. Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ. Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 1999;84:1020–1031.

    CAS  PubMed  Google Scholar 

  14. Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res 1994;74:970–978.

    CAS  PubMed  Google Scholar 

  15. Yuasa K, Michibata H, Omori K, Yanaka N. A novel interaction of cGMP-dependent protein kinase I with troponin T. J Biol Chem 1999;274:37429–37434.

    Article  CAS  PubMed  Google Scholar 

  16. Wollert KC, Fiedler B, Gambaryan S, Smolenski A, Heineke J, Butt E, Trautwein C, Lohmann SM, Drexler H. Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension 2002;39:87–92.

    Article  CAS  PubMed  Google Scholar 

  17. Soff GA, Cornwell TL, Cundiff DL, Gately S, Lincoln TM. Smooth muscle cell expression of type I cyclic GMP-dependent protein kinase is suppressed by continuous exposure to nitrovasodilators, theophylline, cyclic GMP, and cyclic AMP. J Clin Invest 1997;100:2580–2587.

    CAS  PubMed  Google Scholar 

  18. Sumii K, Sperelakis N. cGMP-dependent protein kinase regulation of the L-type Ca2+ current in rat ventricular myocytes. Circ Res 1995;77:803–812.

    CAS  PubMed  Google Scholar 

  19. Klein G, Drexler H, Schröder F. Protein kinase G reverses all isoproterenol induced changes of cardiac single L-type calcium channel gating. Cardiovasc Res 2000;48:367–374.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Hiraoka M, Hirano Y. Effects of α 1 -adrenergic stimulation on L-type Ca2+ current in rat ventricular myocytes. J Mol Cell Cardiol 1998;30:1955–1965.

    CAS  PubMed  Google Scholar 

  21. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93:215–228.

    Article  CAS  PubMed  Google Scholar 

  22. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 2000;105:1395–1406.

    CAS  PubMed  Google Scholar 

  23. Aoki H, Sadoshima J, Izumo S. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med 2000;6:183–188.

    CAS  PubMed  Google Scholar 

  24. Frey N, McKinsey TA, Olson EN. Decoding calcium signals involved in cardiac growth and function. Nat Med 2000;6:1221–1227.

    CAS  PubMed  Google Scholar 

  25. Crabtree GR. Calcium, calcineurin, and the control of transcription. J Biol Chem 2001;276:2313–2316.

    Article  CAS  PubMed  Google Scholar 

  26. Taigen T, De Windt LJ, Lim HW, Molkentin JD. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 2000;97:1196–1201.

    Article  CAS  PubMed  Google Scholar 

  27. Fiedler B, Lohmann SM, Smolenski A, Linnemuller S, Pieske B, Schröder F, Molkentin JD, Drexler H, Wollert KC. Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase I in cardiac myocytes. Proc Natl Acad Sci USA 2002;99:11363–11368.

    CAS  PubMed  Google Scholar 

  28. Suhasini M, Li H, Lohmann SM, Boss GR, Pilz RB. Cyclic-GMP-dependent protein kinase inhibits the Ras/mitogen-activated protein kinase pathway. Mol Cell Biol 1998;18:6983–6994.

    CAS  PubMed  Google Scholar 

  29. Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, Loirand G. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem 2000;275:21722–21729.

    Article  CAS  PubMed  Google Scholar 

  30. Thorburn A, Thorburn J, Chen SY, Powers S, Shubeita HE, Feramisco JR, Chien KR. HRas-dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy. J Biol Chem 1993;268:2244–2249.

    CAS  PubMed  Google Scholar 

  31. Hunter JJ, Tanaka N, Rockman HA, Ross J, Chien KR. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem 1995;270:23173–23178.

    CAS  PubMed  Google Scholar 

  32. Aoki H, Izumo S, Sadoshima J. Angiotensin II activates RhoA in cardiac myocytes: A critical role of RhoA in angiotensin II-induced premyofibril formation. Circ Res 1998;82:666–676.

    CAS  PubMed  Google Scholar 

  33. Arstall MA, Sawyer DB, Fukazawa R, Kelly RA. Cytokine-mediated apoptosis in cardiac myocytes: The role of inducible nitric oxide synthase induction and peroxynitrite generation. Circ Res 1999;85:829–840.

    CAS  PubMed  Google Scholar 

  34. Beckman JS. Parsing the effects of nitric oxide, S-nitrosothiols, and peroxynitrite on inducible nitric oxide synthase-dependent cardiac myocyte apoptosis. Circ Res 1999;85:870–871.

    CAS  PubMed  Google Scholar 

  35. Haunstetter A, Izumo S. Apoptosis. Basic mechanisms and implications for cardiovascular disease. Circ Res 1998;82:1111–1129.

    CAS  PubMed  Google Scholar 

  36. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 1999;84:21–33.

    CAS  PubMed  Google Scholar 

  37. Taimor G, Hofstaetter B, Piper HM. Apoptosis induction by nitric oxide in adult cardiomyocytes via cGMP-signaling and its impairment after simulated ischemia. Cardiovasc Res 2000;45:588–594.

    Article  CAS  PubMed  Google Scholar 

  38. Wu CF, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 1997;272:14860–14866.

    CAS  PubMed  Google Scholar 

  39. Mashimo H, Goyal RK. Lessons from genetically engineered animal models. IV. Nitric oxide synthase gene knockout mice. Am J Physiol 1999;277:G745–G750.

    CAS  PubMed  Google Scholar 

  40. Christensen G, Wang Y, Chien KR. Physiological assessment of complex cardiac phenotypes in genetically engineered mice. Am J Physiol 1997;272:H2513–H2524.

    CAS  PubMed  Google Scholar 

  41. Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nasseri B, Aretz HT, Lindsey ML, Vancon A-C, Huang PL, Lee RT, Zapol WM, Picard MH. Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 2001;104:1286–1291.

    CAS  PubMed  Google Scholar 

  42. Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1996;93:13176–13181.

    Article  CAS  PubMed  Google Scholar 

  43. Liu YH, Xu J, Yang XP, Yang F, Shesely E, Carretero OA. Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure. Hypertension 2002;39:375–381.

    CAS  PubMed  Google Scholar 

  44. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996;93:1087–1094.

    CAS  PubMed  Google Scholar 

  45. Drexler H, Kästner S, Strobel A, Studer R, Brodde OE, Hasenfuss G. Expression, activity and functional significance of inducible nitric oxide synthase in the failing human heart. J Am Coll Cardiol 1998;32:955–963.

    Article  CAS  PubMed  Google Scholar 

  46. Sam F, Sawyer DB, Xie Z, Chang DL, Ngoy S, Brenner DA, Siwik DA, Singh K, Apstein CS, Colucci WS. Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ Res 2001;89:351–356.

    CAS  PubMed  Google Scholar 

  47. Feng Q, Lu X, Jones DL, Shen J, Arnold JM. Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 2001;104:700–704.

    CAS  PubMed  Google Scholar 

  48. Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ, Husain M. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 2002;109:735–743.

    Article  CAS  PubMed  Google Scholar 

  49. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis and angiotensin II. Circulation 1998;98:794–799.

    CAS  PubMed  Google Scholar 

  50. Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, Baliga R, Wang J, Siwik DA, Singh K, Pagano P, Colucci WS, Sawyer DB. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 2001;89:453–460.

    CAS  PubMed  Google Scholar 

  51. Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB. Role of reactive oxygen species and NAD(P)H oxidase α 1 -adrenoceptor in signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 2002;282:C926–C934.

    CAS  PubMed  Google Scholar 

  52. Heger J, Godecke A, Flogel U, Merx MW, Molojavyi A, Kuhn-Velten WN, Schrader J. Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res 2002;90:93–99.

    Article  CAS  PubMed  Google Scholar 

  53. Linz W, Wohlfart P, Scholkens BA, Malinski T, Wiemer G. Interactions among ACE, kinins and NO. Cardiovasc Res 1999;43:549–561.

    Article  CAS  PubMed  Google Scholar 

  54. Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, Wen J, Takeshita A. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 2002;105:868–873.

    Article  CAS  PubMed  Google Scholar 

  55. Bauersachs J, Galuppo P, Fraccarollo D, Christ M, Ertl G. Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation 2001;104:982–985.

    CAS  PubMed  Google Scholar 

  56. von Eickels M, Grohe C, Cleutjens JP, Janssen BJ, Wellens HJ, Doevendans PA. 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 2001;104:1419–1423.

    PubMed  Google Scholar 

  57. Hernandez-Perera O, Perez-Sala D, Navarro-Antolin J, Sanchez-Pascuala R, Hernandez G, Diaz C, Lamas S. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 1998;101:2711–2719.

    CAS  PubMed  Google Scholar 

  58. Nuedling S, Kahlert S, Loebbert K, Doevendans PA, Meyer R, Vetter H, Grohe C. 17 Beta-estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in vitro and in vivo. Cardiovasc Res 1999;43:666–674.

    Article  CAS  PubMed  Google Scholar 

  59. Stasch JP, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Minuth T, Perzborn E, Schramm M, Straub A. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: In vitro studies. Br J Pharmacol 2002;135:333–343.

    CAS  PubMed  Google Scholar 

  60. Stasch JP, Dembowsky K, Perzborn E, Stahl E, Schramm M. Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: In vivo studies. Br J Pharmacol 2002;135:344–355.

    CAS  PubMed  Google Scholar 

  61. Tunctan B, Uludag O, Altug S, Abacioglu N. Effects of nitric oxide synthase inhibition in lipopolysaccharide-induced sepsis in mice. Pharmacol Res 1998;38:405–411.

    CAS  PubMed  Google Scholar 

  62. von der Leyen HE, Dzau VJ. Therapeutic potential of nitric oxide synthase gene manipulation. Circulation 2001;103:2760–2765.

    PubMed  Google Scholar 

  63. Bozkurt B, Torre-Amione G, Warren MS, Whitmore J, Soran OZ, Feldman AM, Mann DL. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 2001;103:1044–1047.

    CAS  PubMed  Google Scholar 

  64. Khurana R, Martin JF, Zachary I. Gene therapy for cardiovascular disease: A case for cautious optimism. Hypertension 2001:38:1210–1216.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wollert, K.C., Drexler, H. (2004). Regulation of Cardiac Remodeling by Nitric Oxide: Focus on Cardiac Myocyte Hypertrophy and Apoptosis. In: Jugdutt, B.I. (eds) The Role of Nitric Oxide in Heart Failure. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7960-5_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7960-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7736-4

  • Online ISBN: 978-1-4020-7960-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics