Skip to main content

NO and the Vasculature: Where Does It Come from and What Does It Do?

  • Chapter
The Role of Nitric Oxide in Heart Failure

Abstract

Nitric oxide (NO) is involved in a large number of cellular processes and dysfunctions in NO production have been implicated in many different disease states. In the vasculature NO is released by endothelial cells where it modulates the underlying smooth muscle to regulate vascular tone. Due to the unique chemistry of NO, such as its reactive and free radical nature, it can interact with many different cellular constituents such as thiols and transition metal ions, which determine its cellular actions. In this review we also discuss many of the useful pharmacological tools that have been developed and used extensively to establish the involvement of NO in endothelium-derived relaxations. In addition, the recent literature identifying a potential source of NO in endothelial cells, which is not directly derived from endothelial nitric oxide synthase is examined. Finally, the photorelaxation phenomena, which mediates the release of NO from a vascular smooth muscle NO store, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991;351:714–718.

    Article  CAS  PubMed  Google Scholar 

  2. Bredt DS, Snyder SH. Nitric oxide: A physiologic messenger molecule. Annu Rev Biochem 1994;63:175–195.

    Article  CAS  PubMed  Google Scholar 

  3. McGuire JJ, Ding H, Triggle CR. Endothelium-derived relaxing factors: A focus on endothelium-derived hyperpolarizing factor(s). Can J Physiol Pharmacol 2001;79:443–470.

    Article  CAS  PubMed  Google Scholar 

  4. Feelisch M. The biochemical pathways fo nitric oxide formation from nitrovasodilators: Appropriate choice of exogenous NO donors and aspects of preparation and handling of aqueous NO solutions. J Cardiovasc Pharmacol 1991;17:S25–S33.

    CAS  Google Scholar 

  5. Malinski T, Taha Z, Grunfeld S, Patton S, Kapturczak M, Tomboulian P. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun 1993;193:1076–1082.

    Article  CAS  PubMed  Google Scholar 

  6. Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch 2000;440:653–666.

    Article  CAS  PubMed  Google Scholar 

  7. Lancaster JR, Jr. A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1997;1:18–30.

    Article  CAS  PubMed  Google Scholar 

  8. Butler AR, Flitney FW, Williams DL. NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: A chemist’s perspective. Trends Pharmacol Sci 1995;16:18–22.

    CAS  PubMed  Google Scholar 

  9. Bonner FT, Stedman G. The Chemistry of Nitric Oxide and Redox-Related Species, New York: John Wiley & Sons Ltd, 1996:3–27.

    Google Scholar 

  10. Fukuto JM. Chemistry of nitric oxide: Biologically relevant aspects. Adv Pharmacol 1995;34:1–16.

    CAS  PubMed  Google Scholar 

  11. Kelm M, Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res 1990;66:1561–1575.

    CAS  PubMed  Google Scholar 

  12. Feelisch M, te PM, Zamora R, Deussen A, Moncada S. Understanding the controversy over the identity of EDRF. Nature 1994;368:62–65.

    Article  CAS  PubMed  Google Scholar 

  13. Moncada S, Palmer RM, Higgs EA. Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 1989;38:1709–1715.

    Article  CAS  PubMed  Google Scholar 

  14. Wood J, Garth waite J. Models of the diffusional spread of nitric oxide: Implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology 1994;33:1235–1244.

    Article  CAS  PubMed  Google Scholar 

  15. Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitric oxide autoxidation in aqueous solution. J Biol Chem 1994;269:5881–5883.

    CAS  PubMed  Google Scholar 

  16. Ford PC, Wink DA, Stanbury DM. Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 1993;326:1–3.

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Miller MJ, Joshi MS, Thomas DD, Lancaster JR, Jr. Accelerated reaction of nitric oxide with O 2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 1998;95:2175–2179.

    CAS  PubMed  Google Scholar 

  18. Hughes MN. Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta 1999;1411:263–272.

    CAS  PubMed  Google Scholar 

  19. Hogg N. The biochemistry and physiology of s-nitrosothiols. Annu Rev Pharmacol Toxicol 2002;42:585–600.

    Article  CAS  PubMed  Google Scholar 

  20. Arnelle DR, Stamler JS. NO+, NO, and NO− donation by S-nitrosothiols: Implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 1995;318:279–285.

    Article  CAS  PubMed  Google Scholar 

  21. Butler AR, Rhodes P. Chemistry, analysis, and biological roles of S-nitrosothiols. Anal Biochem 1997;249:1–9.

    CAS  PubMed  Google Scholar 

  22. Kowaluk EA, Fung HL. Spontaneous liberation of nitric oxide cannot account for in vitro vascular relaxation by S-nitrosothiols. J Pharmacol Exp Ther 1990;255:1256–1264.

    CAS  PubMed  Google Scholar 

  23. Furchgott RF, Jothianandan D. Transnitrosation reactions involved in the sensitisation of rabbit aorta for relaxations by thiols. Pharmacol Toxicol 1998;83:44–46.

    Google Scholar 

  24. Pino RZ, Feelisch M. Bioassay discrimination between nitric oxide (NO.) and nitroxyl (NO−) using L-cysteine. Biochem Biophys Res Commun 1994;201:54–62.

    Article  CAS  PubMed  Google Scholar 

  25. Zamora R, Grzesiok A, Weber H, Feelisch M. Oxidative release of nitric oxide accounts for guanylyl cyclase stimulating, vasodilator and anti-platelet activity of Piloty’s acid: A comparison with Angeli’s salt. Biochem J 1995;312 (Pt 2):333–339.

    CAS  PubMed  Google Scholar 

  26. Doyle MP, Mahapatro SN, Broene RD, Guy JK. Oxidation and reduction of hemoproteins by trixododitirate(II). The roel of nitrosyl hydride and nitrite. J Am Chem Soc 1988;110:593–599.

    CAS  Google Scholar 

  27. Khan AA, Schuler MM, Coppock RW. Inhibitory effects of various sulfur compounds on the activity of bovine erythrocyte enzymes. J Toxicol Environ Health 1987;22:481–490.

    CAS  PubMed  Google Scholar 

  28. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87:1620–1624.

    CAS  PubMed  Google Scholar 

  29. Huie RE, Padmaja S. The reaction of no with superoxide. Free Radic Res Commun 1993;18:195–199.

    CAS  PubMed  Google Scholar 

  30. Kirsch M, de Groot H. Formation of peroxynitrite from reaction of nitroxyl anion with molecular oxygen. J Biol Chem 2002;277:13379–13388.

    CAS  PubMed  Google Scholar 

  31. Liu S, Beckman JS, Ku DD. Peroxynitrite, a product of superoxide and nitric oxide, produces coronary vasorelaxation in dogs. J Pharmacol Exp Ther 1994;268:1114–1121.

    CAS  PubMed  Google Scholar 

  32. Moro MA, Darley-Usmar VM, Goodwin DA, Read NG, Zamora-Pino R, Feelisch M, Radomski MW, Moncada S. Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci USA 1994;91:6702–6706.

    CAS  PubMed  Google Scholar 

  33. Moro MA, Darley-Usmar VM, Lizasoain I, Su Y, Knowles RG, Radomski MW, Moncada S. The formation of nitric oxide donors from peroxynitrite. Br J Pharmacol 1995;116:1999–2004.

    CAS  PubMed  Google Scholar 

  34. Mayer B, Schrammel A, Klatt P, Koesling D, Schmidt K. Peroxynitrite-induced accumulation of cyclic GMP in endothelial cells and stimulation of purified soluble guanylyl cyclase. Dependence on glutathione and possible role of S-nitrosation. J Biol Chem 1995;270:17355–17360.

    CAS  PubMed  Google Scholar 

  35. Iesaki T, Gupte SA, Kaminski PM, Wolin MS. Inhibition of guanylate cyclase stimulation by NO and bovine arterial relaxation to peroxynitrite and H 2 O 2 . Am J Physiol 1999;277:H978–H985.

    CAS  PubMed  Google Scholar 

  36. Kooy NW, Royall JA. Agonist-induced peroxynitrite production from endothelial cells. Arch Biochem Biophys 1994;310:352–359.

    Article  CAS  PubMed  Google Scholar 

  37. Marin J, Rodriguez-Martinez MA. Nitric oxide, oxygen-derived free radicals and vascular endothelium. J Auton Pharmacol 1995;15:279–307.

    CAS  PubMed  Google Scholar 

  38. Pagano PJ, Ito Y, Tornheim K, Gallop PM, Tauber AI, Cohen RA. An NADPH oxidase superoxide-generating system in the rabbit aorta. Am J Physiol 1995;268:H2274–H2280.

    CAS  PubMed  Google Scholar 

  39. Suzuki H, DeLano FA, Parks DA, Jamshidi N, Granger DN, Ishii H, Suematsu M, Zweifach BW, Schmid-Schonbein GW. Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci USA 1998;95:4754–4759.

    CAS  PubMed  Google Scholar 

  40. Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, Brandes RP, Busse R. Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 2001;88:44–51.

    CAS  PubMed  Google Scholar 

  41. Cosentino F, Sill JC, Katusic ZS. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension 1994;23:229–235.

    CAS  PubMed  Google Scholar 

  42. Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 1998;273:25804–25808.

    CAS  PubMed  Google Scholar 

  43. Ignarro LJ, Fukuto JM, Griscavage JM, Rogers NE, Byrns RE. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from L-arginine. Proc Natl Acad Sci USA 1993;90:8103–8107.

    CAS  PubMed  Google Scholar 

  44. Benko B, Yu NT. Resonance Raman studies of nitric oxide binding to ferric and ferrous hemoproteins: Detection of Fe(III)—NO stretching, Fe(III)—N—O bending, and Fe(II)—N—O bending vibrations. Proc Natl Acad Sci USA 1983;80:7042–7046.

    CAS  PubMed  Google Scholar 

  45. Gow AJ, Stamler JS. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 1998;391:169–173.

    CAS  PubMed  Google Scholar 

  46. Gow AJ, Luchsinger BP, Pawloski JR, Singel DJ, Stamler JS. The oxyhemoglobin reaction of nitric oxide. Proc Natl Acad Sci USA 1999;96:9027–9032.

    Article  CAS  PubMed  Google Scholar 

  47. Gorren AC, de Boer E, Wever R. The reaction of nitric oxide with copper proteins and the photodissociation of copper-NO complexes. Biochim Biophys Acta 1987;916:38–47.

    CAS  PubMed  Google Scholar 

  48. Rochelle LG, Morana SJ, Kruszyna H, Russell MA, Wilcox DE, Smith RP. Interactions between hydroxocobalamin and nitric oxide (NO): Evidence for a redox reaction between NO and reduced cobalamin and reversible NO binding to oxidized cobalamin. J Pharmacol Exp Ther 1995;275:48–52.

    CAS  PubMed  Google Scholar 

  49. Murphy ME, Sies H. Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc Natl Acad Sci USA 1991;88:10860–10864.

    CAS  PubMed  Google Scholar 

  50. Fukuto JM, Chiang K, Hszieh R, Wong P, Chaudhuri G. The pharmacological activity of nitroxyl: A potent vasodilator with activity similar to nitric oxide and/or endothelium-derived relaxing factor. J Pharmacol Exp Ther 1992;263:546–551.

    CAS  PubMed  Google Scholar 

  51. Fukuto JM, Gulati P, Nagasawa HT. Involvement of nitroxyl (HNO) in the cyanamide-induced vasorelaxation of rabbit aorta. Biochem Pharmacol 1994;47:922–924.

    Article  CAS  PubMed  Google Scholar 

  52. Hobbs AJ, Fukuto JM, Ignarro LJ. Formation of free nitric oxide from L-arginine by nitric oxide synthase: Direct enhancement of generation by superoxide dismutase. Proc Natl Acad Sci USA 1994;91:10992–10996.

    CAS  PubMed  Google Scholar 

  53. Schmidt HH, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M. No. NO from NO synthase. Proc Natl Acad Sci USA 1996;93:14492–14497.

    CAS  PubMed  Google Scholar 

  54. Li CG, Karagiannis J, Rand MJ. Comparison of the redox forms of nitrogen monoxide with the nitrergic transmitter in the rat anococcygeus muscle. Br J Pharmacol 1999;127:826–834.

    CAS  PubMed  Google Scholar 

  55. Ellis A, Li CG, Rand MJ. Differential actions of L-cysteine on responses to nitric oxide, nitroxyl anions and EDRF in the rat aorta. Br J Pharmacol 2000;129:315–322.

    Article  CAS  PubMed  Google Scholar 

  56. Adak S, Wang Q, Stuehr DJ. Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. Implications for mechanism. J Biol Chem 2000:275:33554–33561.

    CAS  PubMed  Google Scholar 

  57. Rusche KM, Spiering MM, Marletta MA. Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase. Biochemistry 1998;37:15503–15512.

    Article  CAS  PubMed  Google Scholar 

  58. Sharpe MA, Cooper CE. Reactions of nitric oxide with mitochondrial cytochrome c: A novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem J 1998;332(Pt 1):9–19.

    CAS  PubMed  Google Scholar 

  59. Wong PS, Hyun J, Fukuto JM, Shirota FN, DeMaster EG, Shoeman DW, Nagasawa HT. Reaction between S-nitrosothiols and thiols: Generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry 1998;37:5362–5371.

    CAS  PubMed  Google Scholar 

  60. Lang D, Hussain SA, Lewis MJ. Homocysteine inhibits endothelium-dependent relaxation in isolated rabbit aortic rings. Br J Pharmacol 1997;145P.

    Google Scholar 

  61. Quere I, Hillaire-Buys D, Brunschwig C, Chapal J, Janbon C, Blayac JP, Petit P, Loubatieres-Mariani MM. Effects of homocysteine on acetylcho. Br J Pharmacol 1997;122:351–357.

    CAS  PubMed  Google Scholar 

  62. Wanstall JC, Jeffery TK, Gambino A, Lovren F, Triggle CR. Vascular smooth muscle relaxation mediated by nitric oxide donors: A comparison with acetylcholine, nitric oxide and nitroxyl ion. Br J Pharmacol 2001;134:463–472.

    Article  CAS  PubMed  Google Scholar 

  63. Wink DA, Feelisch M, Fukuto J, Chistodoulou D, Jourd’heuil D, Grisham MB, Vodovotz Y, Cook JA, Krishna M, DeGraff WG, Kim S, Gamson J, Mitchell JB. The cytotoxicity of nitroxyl: Possible implications for the pathophysiological role of NO. Arch Biochem Biophys 1998;351:66–74.

    Article  CAS  PubMed  Google Scholar 

  64. Ohshima H, Gilibert I, Bianchini F. Induction of DNA strand breakage and base oxidation by nitroxyl anion through hydroxyl radical production. Free Radic Biol Med 1999;26:1305–1313.

    Article  CAS  PubMed  Google Scholar 

  65. Miranda KM, Espey MG, Yamada K, Krishna M, Ludwick N, Kim S, Jourd’heuil D, Grisham MB, Feelisch M, Fukuto JM, Wink DA. Unique oxidative mechanisms for the reactive nitrogen oxide species, nitroxyl anion. J Biol Chem 2001;276:1720–1727.

    CAS  PubMed  Google Scholar 

  66. Ma XL, Gao F, Liu GL, Lopez BL, Christopher TA, Fukuto JM, Wink DA, Feelisch M. Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury. Proc Natl Acad Sci USA 1999;96:14617–14622.

    CAS  PubMed  Google Scholar 

  67. De Vriese AS, Verbeuren TJ, Van d, V, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol 2000;130:963–974.

    PubMed  Google Scholar 

  68. Katusic ZS. Vascular endothelial dysfunction: Does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol 2001;281:H981–H986.

    CAS  PubMed  Google Scholar 

  69. Cosentino F, Barker JE, Brand MP, Heales SJ, Werner ER, Tippins JR, West N, Channon KM, Volpe M, Luscher TF. Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol 2001;21:496–502.

    CAS  PubMed  Google Scholar 

  70. Reif A, Zecca L, Riederer P, Feelisch M, Schmidt HH. Nitroxyl oxidizes NADPH in a superoxide dismutase inhibitable manner. Free Radic Biol Med 2001;30:803–808.

    Article  CAS  PubMed  Google Scholar 

  71. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992;258:1898–1902.

    CAS  PubMed  Google Scholar 

  72. Lipton AJ, Johnson MA, Macdonald T, Lieberman MW, Gozal D, Gaston B. S-nitrosothiols signal the ventilatory response to hypoxia. Nature 2001;413:171–174.

    CAS  PubMed  Google Scholar 

  73. Williams DL. S-nitrosation and the reaction of S-nitrso compounds. Chem Soc Rev 1985;14:171–196.

    Article  CAS  Google Scholar 

  74. Sexton DJ, Muruganandam A, McKenney DJ, Mutus B. Visible light photochemical release of nitric oxide from Snitrosoglutathione: Potential photochemotherapeutic applications. Photochem Photobiol 1994;59:463–467.

    CAS  PubMed  Google Scholar 

  75. Dicks AP, Williams DL. Generation of nitric oxide from S-nitrosothiols using protein-bound Cu2+ sources. Chem Biol 1996;3:655–659.

    Article  CAS  PubMed  Google Scholar 

  76. Al Sa’doni HH, Megson IL, Bisland S, Butler AR, Flitney FW. Neocuproine, a selective Cu(I) chelator, and the relaxation of rat vascular smooth muscle by S-nitrosothiols. Br J Pharmacol 1997;121:1047–1050.

    Google Scholar 

  77. Gordge MP, Meyer DJ, Hothersall J, Neild GH, Payne NN, Noronha-Dutra A. Copper-chelation-induced reduction of the biological activity of S-nitrosothiols. Br J Pharmacol 1995;114:1083–1089.

    CAS  PubMed  Google Scholar 

  78. Jourd’heuil D, Laroux FS, Miles AM, Wink DA, Grisham MB. Effect of superoxide dismutase on the stability of S-nitrosothiols. Arch Biochem Biophys 1999;361:323–330.

    CAS  PubMed  Google Scholar 

  79. Myers PR, Minor RL, Jr., Guerra R, Jr., Bates JN, Harrison DG. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 1990;345:161–163.

    Article  CAS  PubMed  Google Scholar 

  80. Keaney JF Jr., Simon DI, Stamler JS, Jaraki O, Scharfstein J, Vita JA, Loscalzo J. NO forms an adduct with serum albumin that has endothelium-derived relaxing factor-like properties. J Clin Invest 1993;91:1582–1589.

    CAS  PubMed  Google Scholar 

  81. Jia L, Furchgott RF. Inhibition by sulfhydryl compounds of vascular relaxation induced by nitric oxide and endothelium-derived relaxing factor. J Pharmacol Exp Ther 1993;267:371–378.

    CAS  PubMed  Google Scholar 

  82. Creager MA, Roddy MA, Boles K, Stamler JS. N-acetylcysteine does not influence the activity of endothelium-derived relaxing factor in vivo. Hypertension 1997;29:668–672.

    CAS  PubMed  Google Scholar 

  83. Marley R, Patel RP, Orie N, Ceaser E, Darley-Usmar V, Moore K. Formation of nanomolar concentrations of S-nitroso-albumin in human plasma by nitric oxide. Free Radic Biol Med 2001;31:688–696.

    Article  CAS  PubMed  Google Scholar 

  84. Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, Arnelle D, Mullins ME, Sugarbaker DJ, Chee C, Singel DJ. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA 1993;90:10957–10961.

    CAS  PubMed  Google Scholar 

  85. Askew SC, Butler AR, Flitney FW, Kemp GD, Megson IL. Chemical mechanisms underlying the vasodilator and platelet anti-aggregating properties of S-nitroso-N-acetyl-DL-penicillamine and S-nitrosoglutathione. Bioorg Med Chem 1995;3:1–9.

    CAS  PubMed  Google Scholar 

  86. Zai A, Rudd MA, Scribner AW, Loscalzo J. Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. J Clin Invest 1999;103:393–399.

    CAS  PubMed  Google Scholar 

  87. Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B. Mechanism of transfer of NO from extracellular S-nitrosothiols into the cytosol by cell-surface protein disulfide isomerase. Proc Natl Acad Sci USA 2001;98:9539–9544.

    CAS  PubMed  Google Scholar 

  88. Mulsch A, Lurie DJ, Seimenis I, Fichtlscherer B, Foster MA. Detection of nitrosyl-iron complexes by proton-electron-double-resonance imaging. Free Radic Biol Med 1999;27:636–646.

    CAS  PubMed  Google Scholar 

  89. Ueno T, Suzuki Y, Fujii S, Vanin AF, Yoshimura T. In vivo nitric oxide transfer of a physiological NO carrier, dinitrosyl dithiolato iron complex, to target complex. Biochem Pharmacol 2002;63:485–493.

    CAS  PubMed  Google Scholar 

  90. Vanin AF, Stukan RA, Manukhina EB. Physical properties of dinitrosyl iron complexes with thiol-containing ligands in relation with their vasodilator activity. Biochim Biophys Acta 1996;1295:5–12.

    PubMed  Google Scholar 

  91. Mulsch A, Mordvintcev PI, Vanin AF, Busse R. Formation and release of dinitrosyl iron complexes by endothelial cells. Biochem Biophys Res Commun 1993;196:1303–1308.

    Article  CAS  PubMed  Google Scholar 

  92. Vanin AF. Endothelium-derived relaxing factor is a nitrosyl iron complex with thiol ligands. FEBS Lett 1991;289:1–3.

    Article  CAS  PubMed  Google Scholar 

  93. Muller B, Kleschyov AL, Stoclet JC. Evidence for N-acetylcysteine-sensitive nitric oxide storage as dinitrosyl-iron complexes in lipopolysaccharide-treated rat aorta. Br J Pharmacol 1996;119:1281–1285.

    CAS  PubMed  Google Scholar 

  94. Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Intragastric nitric oxide production in humans: Measurements in expelled air. Gut 1994;35:1543–1546.

    CAS  PubMed  Google Scholar 

  95. Modin A, Bjorne H, Herulf M, Alving K, Weitzberg E, Lundberg JO. Nitrite-derived nitric oxide: A possible mediator of ‘acidic-metabolic’ vasodilation. Acta Physiol Scand 2001;171:9–16.

    Article  CAS  PubMed  Google Scholar 

  96. Cocks TM, Angus JA. Comparison of relaxation responses of vascular and non-vascular smooth muscle to endothelium-derived relaxing factor (EDRF), acidified sodium nitrite (NO) and sodium nitroprusside. Naunyn Schmiedebergs Arch Pharmacol 1990;341:364–372.

    Article  CAS  PubMed  Google Scholar 

  97. Boucher JL, Genet A, Vadon S, Delaforge M, Henry Y, Mansuy D. Cytochrome P450 catalyzes the oxidation of N omega-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline. Biochem Biophys Res Commun 1992;187:880–886.

    Article  CAS  PubMed  Google Scholar 

  98. Jia Y, Zacour M, Tolloczko B, Martin JG. Nitric oxide synthesis by tracheal smooth muscle cells by a nitric oxide synthase-independent pathway. Am J Physiol 1998;275:L896–L901.

    Google Scholar 

  99. Hobbs AJ. Soluble guanylate cyclase: The forgotten sibling. Trends Pharmacol Sci 1997;18:484–491.

    CAS  PubMed  Google Scholar 

  100. Martin W, Villani GM, Jothianandan D, Furchgott RF. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther 1985;232:708–716.

    CAS  PubMed  Google Scholar 

  101. Wolin MS, Cherry PD, Rodenburg JM, Messina EJ, Kaley G. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion. J Pharmacol Exp Ther 1990;254:872–876.

    CAS  PubMed  Google Scholar 

  102. Marczin N, Ryan US, Catravas JD. Methylene blue inhibits nitrovasodil. J Pharmacol Exp Ther 1992;263:170–179.

    CAS  PubMed  Google Scholar 

  103. Mayer B, Brunner F, Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol 1993;45:367–374.

    Article  CAS  PubMed  Google Scholar 

  104. Luo D, Das S, Vincent SR. Effects of methylene blue and LY83583 on neuronal nitric oxide synthase and NADPH-diaphorase. Eur J Pharmacol 1995;290:247–251.

    CAS  PubMed  Google Scholar 

  105. Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol 1995;48:184–188.

    CAS  PubMed  Google Scholar 

  106. Feelisch M, Kotsonis P, Siebe J, Clement B, Schmidt HH. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a] quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation. Mol Pharmacol 1999;56:243–253.

    CAS  PubMed  Google Scholar 

  107. Zhao Y, Brandish PE, DiValentin M, Schelvis JP, Babcock GT, Marletta MA. Inhibition of soluble guanylate cyclase by ODQ. Biochemistry 2000;39:10848–10854.

    CAS  PubMed  Google Scholar 

  108. Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986;320:454–456.

    Article  CAS  PubMed  Google Scholar 

  109. Moncada S, Palmer RM, Gryglewski RJ. Mechanism of action of some inhibitors of endothelium-derived relaxing factor. Proc Natl Acad Sci USA 1986;83:9164–9168.

    CAS  PubMed  Google Scholar 

  110. Rubanyi GM, Vanhoutte PM. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Am J Physiol 1986;250:H815–H821.

    CAS  PubMed  Google Scholar 

  111. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–526.

    Article  CAS  PubMed  Google Scholar 

  112. Mian KB, Martin W. Differential sensitivity of basal and acetylcholine-stimulated activity of nitric oxide to destruction by superoxide anion in rat aorta. Br J Pharmacol 1995;115:993–1000.

    CAS  PubMed  Google Scholar 

  113. Ignarro LJ, Byrns RE, Buga GM, Wood KS, Chaudhuri G. Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: Use of pyrogallol and superoxide dismutase to study endothelium-dependent and nitric oxide-elicited vascular smooth muscle relaxation. J Pharmacol Exp Ther 1988;244:181–189.

    CAS  PubMed  Google Scholar 

  114. Mittra S, Singh M. Possible mechanism of captopril induced endothelium-dependent relaxation in isolated rabbit aorta. Mol Cell Biochem 1998;183:63–67.

    Article  CAS  PubMed  Google Scholar 

  115. Srivastava P, Hegde LG, Patnaik GK, Dikshit M. Role of endothelial-derived reactive oxygen species and nitric oxide in norepinephrine-induced rat aortic ring contractions. Pharmacol Res 1998;38:265–274.

    Article  CAS  PubMed  Google Scholar 

  116. Inoue M, Watanabe N, Matsuno K, Sasaki J, Tanaka Y, Hatanaka H, Amachi T. Expression of a hybrid Cu/Zn-type superoxide dismutase which has high affinity for heparin-like proteoglycans on vascular endothelial cells. J Biol Chem 1991;266:16409–16414.

    CAS  PubMed  Google Scholar 

  117. Abrahamsson T, Brandt U, Marklund SL, Sjoqvist PO. Vascular bound recombinant extracellular superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-dependent arterial relaxation. Circ Res 1992;70:264–271.

    CAS  PubMed  Google Scholar 

  118. Wambi-Kiesse CO, Katusic ZS. Inhibition of copper/zinc superoxide dismutase impairs NO.-mediated endothelium-dependent relaxations. Am J Physiol 1999;276:H1043–H1048.

    CAS  PubMed  Google Scholar 

  119. Halliwell B, Gutteridge JMC. The Chemistry of Free Radicals and Related Reactive Species, Oxford: Oxford University Press, 1999:110–185.

    Google Scholar 

  120. Akpaffiong MJ, Taylor AA. Antihypertensive and vasodilator actions of antioxidants in spontaneously hypertensive rats. Am J Hypertens 1998;11:1450–1460.

    Article  CAS  PubMed  Google Scholar 

  121. Fontana L, McNeill KL, Ritter JM, Chowienczyk PJ. Effects of vitamin C and of a cell permeable superoxide dismutase mimetic on acute lipoprotein induced endothelial dysfunction in rabbit aortic rings. Br J Pharmacol 1999;126:730–734.

    Article  CAS  PubMed  Google Scholar 

  122. Jackson TS, Xu A, Vita JA, Keaney JF Jr. Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res 1998;83:916–922.

    CAS  PubMed  Google Scholar 

  123. Aleryani S, Milo E, Rose Y, Kostka P. Superoxide-mediated decomposition of biological S-nitrosothiols. J Biol Chem 1998;273:6041–6045.

    Article  CAS  PubMed  Google Scholar 

  124. Scorza G, Pietraforte D, Minetti M. Role of ascorbate and protein thiols in the release of nitric oxide from S-nitroso-albumin and S-nitroso-glutathione in human plasma. Free Radic Biol Med 1997;22:633–642.

    CAS  PubMed  Google Scholar 

  125. Gorren AC, Schrammel A, Schmidt K, Mayer B. Decomposition of S-nitrosoglutathione in the presence of copper ions and glutathione. Arch Biochem Biophys 1996;330:219–228.

    Article  CAS  PubMed  Google Scholar 

  126. De Man JG, Moreels TG, De Winter BY, Herman AG, Pelckmans PA. Neocuproine potentiates the activity of the nitrergic neurotransmitter but inhibits that of S-nitrosothiols. Eur J Pharmacol 1999;381:151–159.

    PubMed  Google Scholar 

  127. Hobbs AJ, Tucker JF, Gibson A. Differentiation by hydroquinone of relaxations induced by exogenous and endogenous nitrates in non-vascular smooth muscle: Role of superoxide anions. Br J Pharmacol 1991;104:645–650.

    CAS  PubMed  Google Scholar 

  128. Akaike T, Yoshida M, Miyamoto Y, Sato K, Kohno M, Sasamoto K, Miyazaki K, Ueda S, Maeda H. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/.NO through a radical reaction. Biochemistry 1993;32:827–832.

    Article  CAS  PubMed  Google Scholar 

  129. Yoshida M, Akaike T, Goto S, Takahashi W, Inadome A, Yono M, Seshita H, Maeda H, Ueda S. Effect of the NO scavenger carboxy-ptio on endothelium-dependent vasorelaxation of various blood vessels from rabbits. Life Sci 1998;62:203–211.

    Article  CAS  PubMed  Google Scholar 

  130. Rand MJ, Li CG. Discrimination by the NO-trapping agent, carboxy-PTIO, between NO and the nitrergic transmitter but not between NO and EDRF. Br J Pharmacol 1995;116:1906–1910.

    CAS  PubMed  Google Scholar 

  131. Pieper GM, Siebeneich W. Use of a nitronyl nitroxide to discriminate the contribution of nitric oxide radical in endothelium-dependent relaxation of control and diabetic blood vessels. J Pharmacol Exp Ther 1997;283:138–147.

    CAS  PubMed  Google Scholar 

  132. Pfeiffer S, Leopold E, Hemmens B, Schmidt K, Werner ER, Mayer B. Interference of carboxy-PTIO with nitric o. Free Radic Biol Med 1997;22:787–794.

    Article  CAS  PubMed  Google Scholar 

  133. La M, Li CG, Rand MJ. Comparison of the effects of hydroxocobalamin and oxyhaemoglobin on responses to NO, EDRF and the nitrergic transmitter. Br J Pharmacol 1996;117:805–810.

    CAS  PubMed  Google Scholar 

  134. Gillespie JS, Sheng H. Influence of haemoglobin and erythrocytes on the effects of EDRF, a smooth muscle inhibitory factor, and nitric oxide on vascular and nonvascular smooth muscle. Br J Pharmacol 1988;95:1151–1156.

    CAS  PubMed  Google Scholar 

  135. Khan MT, Jothianandan D, Matsunaga K, Furchgott RF. Vasodilation induced by acetylcholine and by glyceryl trinitrate in rat aortic and mesenteric vasculature. J Vasc Res 1992;29:20–28.

    CAS  PubMed  Google Scholar 

  136. Rand MJ, Li CG. Differential effects of hydroxocobalamin on relaxations induced by nitrosothiols in rat aorta and anococcygeus muscle. Eur J Pharmacol 1993;241:249–254.

    Article  CAS  PubMed  Google Scholar 

  137. Hrinczenko BW, Alayash AI, Wink DA, Gladwin MT, Rodgers GP, Schechter AN. Effect of nitric oxide and nitric oxide donors on red blood cell oxygen transport. Br J Haematol 2000;110:412–419.

    Article  CAS  PubMed  Google Scholar 

  138. Rajanayagam MA, Li CG, Rand MJ. Differential effects of hydroxocobalamin on NO-mediated relaxations in rat aorta and anococcygeus muscle. Br J Pharmacol 1993:108:3–5.

    CAS  PubMed  Google Scholar 

  139. Kaczka EE, Wolf DE, Kuehl FA, Folkers K. Vitamin B12. Modifications of cyano-cobalamin. J Am Chem Soc 1951;73:3569–3572.

    CAS  Google Scholar 

  140. Marczin N, Ryan US, Catravas JD. Sulfhydryl-depleting agents, but not deferoxamine, modulate EDRF action in cultured pulmonary arterial cells. Am J Physiol 1993;265:L220–L227.

    CAS  PubMed  Google Scholar 

  141. Patel JM, Block ER. Sulfhydryl-disulfide modulation and the role of disulflde oxidoreductases in regulation of the catalytic activity of nitric oxide synthase in pulmonary artery endothelial cells. Am J Respir Cell Mol Biol 1995;13:352–359.

    CAS  PubMed  Google Scholar 

  142. Hatchett RJ, Gryglewski RJ, Mlochowski J, Zembowicz A, Radziszewski W. Carboxyebselen a potent and selective inhibitor of endothelial nitric oxide synthase. J Physiol Pharmacol 1994;45:55–67.

    PubMed  Google Scholar 

  143. Hattori R, Yui Y, Shinoda E, Inoue R, Aoyama T, Masayasu H, Kawai C, Sasayama S. Effect of ebselen on bovine and rat nitric oxide synthase activity is modified by thiols. Jpn J Pharmacol 1996;72:191–193.

    CAS  PubMed  Google Scholar 

  144. Zembowicz A, Hatchett RJ, Radziszewski W, Gryglewski RJ. Inhibition of endothelial nitric oxide synthase by ebselen. Prevention by thiols suggests the inactivation by ebselen of a critical thiol essential for the catalytic activity of nitric oxide synthase. J Pharmacol Exp Ther 1993;267:1112–1118.

    CAS  PubMed  Google Scholar 

  145. Kim HR, Kim JW, Park JY, Je HD, Lee SY, Huh IH, Sohn UD. The effects of thiol compounds and ebselen on nitric oxide activity in rat aortic vascular responses. J Auton Pharmacol 2001;21:23–28.

    Article  CAS  PubMed  Google Scholar 

  146. Li CG, Brosch SF, Rand MJ. Inhibition by ethacrynic acid of NO-mediated relaxations of the rat anococcygeus muscle. Clin Exp Pharmacol Physiol 1994;21:293–299.

    CAS  PubMed  Google Scholar 

  147. Rapoport RM, Murad F. Effects of ethacrynic acid and cystamine on sodium nitroprusside-induced relaxation, cyclic GMP levels and guanylate cyclase activity in rat aorta. Gen Pharmacol 1988;19:61–65.

    CAS  PubMed  Google Scholar 

  148. Hibbs JB, Jr., Vavrin Z, Taintor RR. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 1987;138:550–565.

    CAS  PubMed  Google Scholar 

  149. Li CG, Rand MJ. Evidence for a role of nitric oxide in the neurotransmitter system mediating relaxation of the rat anococcygeus muscle. Clin Exp Pharmacol Physiol 1989;16:933–938.

    CAS  PubMed  Google Scholar 

  150. Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 1990;101:746–752.

    CAS  PubMed  Google Scholar 

  151. Bogle RG, MacAllister RJ, Whitley GS, Vallance P. Induction of NG-monomethyl-L-arginine uptake: A mechanism for differential inhibition of NO synthases? Am J Physiol 1995;269:C750–C756.

    CAS  PubMed  Google Scholar 

  152. Moore PK, al Swayeh OA, Chong NW, Evans RA, Gibson A. L-NG-nitro arginine (L-NOARG), a novel, Larginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol 1990;99:408–412.

    CAS  PubMed  Google Scholar 

  153. Kilpatrick EV, Cocks TM. Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery. Br J Pharmacol 1994;112:557–565.

    CAS  PubMed  Google Scholar 

  154. Kemp BK, Cocks TM. Evidence that mechanisms dependent and independent of nitric oxide mediate endothelium-dependent relaxation to bradykinin in human small resistance-like coronary arteries. Br J Pharmacol 1997;120:757–762.

    CAS  PubMed  Google Scholar 

  155. Cohen RA, Plane F, Najibi S, Huk I, Malinski T, Garland CJ. Nitric oxide is the mediator of both endotheliumdependent relaxation and hyperpolarization of the rabbit carotid artery. Proc Natl Acad Sci USA 1997;94:4193–4198.

    CAS  PubMed  Google Scholar 

  156. Simonsen U, Wadsworth KM, Buus NH, Mulvany MJ. In vitro simultaneous measurements of relaxation and nitric oxide concentration in rat superior mesenteric artery. J Physiol 1999;516(Pt 1):271–282.

    Article  CAS  PubMed  Google Scholar 

  157. Ge ZD, Zhang XH, Fung PC, He GW. Endothelium-dependent hyperpolarization and relaxation resistance to N(G)-nitro-L-arginine and indomethacin in coronary circulation. Cardiovasc Res 2000;46:547–556.

    Article  CAS  PubMed  Google Scholar 

  158. Mendizabal VE, Poblete I, Lomniczi A, Rettori V, Huidobro-Toro JP, Adler-Graschinsky E. Nitric oxide synthase-independent release of nitric oxide induced by KCl in the perfused mesenteric bed of the rat. Eur J Pharmacol 2000;409:85–91.

    Article  CAS  PubMed  Google Scholar 

  159. Vanheel B, Van d, V, Leusen I. Contribution of nitric oxide to the endothelium-dependent hyperpolarization in rat aorta. J Physiol 1994;475:277–284.

    CAS  PubMed  Google Scholar 

  160. Tare M, Parkington HC, Coleman HA, Neild TO, Dusting GJ. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature 1990;346:69–71.

    Article  CAS  PubMed  Google Scholar 

  161. Garland CJ, McPherson GA. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol 1992;105:429–435.

    CAS  PubMed  Google Scholar 

  162. Murphy ME, Brayden JE. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 1995;486(Pt 1):47–58.

    CAS  PubMed  Google Scholar 

  163. Robertson BE, Schubert R, Hescheler J, Nelson MT. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol 1993;265:C299–C303.

    CAS  PubMed  Google Scholar 

  164. Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 1994;91:7583–7587.

    CAS  PubMed  Google Scholar 

  165. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994;368:850–853.

    Article  CAS  PubMed  Google Scholar 

  166. Haburcak M, Wei L, Viana F, Prenen J, Droogmans G, Nilius B. Calcium-activated potassium channels in cultured human endothelial cells are not directly modulated by nitric oxide. Cell Calcium 1997;21:291–300.

    Article  CAS  PubMed  Google Scholar 

  167. Vanheel B, Van d, V. Nitric oxide induced membrane hyperpolarization in the rat aorta is not mediated by glibenclamide-sensitive potassium channels. Can J Physiol Pharmacol 1997;75:1387–1392.

    Article  CAS  PubMed  Google Scholar 

  168. Goud C, DiPiero A, Lockette WE, Webb RC, Charpie JR. Cyclic GMP-independent mechanisms of nitric oxide-induced vasodilation. Gen Pharmacol 1999;32:51–55.

    Article  CAS  PubMed  Google Scholar 

  169. Plane F, Garland CJ. Differential effects of acetylcholine, nitric oxide and levcromakalim on smooth muscle membrane potential and tone in the rabbit basilar artery. Br J Pharmacol 1993;110:651–656.

    CAS  PubMed  Google Scholar 

  170. Plane F, Wiley KE, Jeremy JY, Cohen RA, Garland CJ. Evidenc that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Br J Pharmacol 1998;123:1351–1358.

    Article  CAS  PubMed  Google Scholar 

  171. Jia Y, Zacour M, Tolloczko B, Martin JG. Nitric oxide synthesis by tracheal smooth muscle cells by a nitric oxide synthase-independent pathway. Am J Physiol 1998;275:L895–L901.

    CAS  PubMed  Google Scholar 

  172. Yuan XJ, Tod ML, Rubin LJ, Blaustein MP. Inhibition of cytochrome P-450 reduces voltage-gated K+ currents in pulmonary arterial myocytes. Am J Physiol 1995;268:C259–C270.

    CAS  PubMed  Google Scholar 

  173. Edwards G, Zygmunt PM, Hogestatt ED, Weston AH. Effects of cytochrome P450 inhibitors on potassium currents and mechanical activity in rat portal vein. Br J Pharmacol 1996;119:691–701.

    CAS  PubMed  Google Scholar 

  174. Vanheel B, Calders P, Van dB, I, Van d, V. Influence of some phospholipase A2 and cytochrome P450 inhibitors on rat arterial smooth muscle K+ currents. Can J Physiol Pharmacol 1999;77:481–489.

    Article  CAS  PubMed  Google Scholar 

  175. Iftinca M, Waldron GJ, Triggle CR, Cole WC. State-dependent block of rabbit vascular smooth muscle delayed rectifier and Kv1.5 channels by inhibitors of cytochrome P450-dependent enzymes. J Pharmacol Exp Ther 2001;298:718–728.

    CAS  PubMed  Google Scholar 

  176. Moroz LL, Norby SW, Cruz L, Sweedler JV, Gillette R, Clarkson RB. Non-enzymatic production of nitric oxide (NO) from NO synthase inhibitors. Biochem Biophys Res Commun 1998;253:571–576.

    Article  CAS  PubMed  Google Scholar 

  177. Furchgott RF, Sleator WJ, McCaman MW, Elchlepp J. Relaxation of arterial strips by light and the influence of drugs on this photodynamic effect. J Pharmacol Exp Ther 1955;113:122.

    Google Scholar 

  178. Karlsson JO, Axelsson KL, Andersson RG. Effects of ultraviolet radiation on the tension and the cyclic GMP level of bovine mesenteric arteries. Life Sci 1984;34:1555–1563.

    Article  CAS  PubMed  Google Scholar 

  179. Matsunaga K, Furchgott RF. Interactions of light and sodium nitrite in producing relaxation of rabbit aorta. J Pharmacol Exp Ther 1989;248:687–695.

    CAS  PubMed  Google Scholar 

  180. Chen X, Gillis CN. Enhanced photorelaxation in aorta, pulmonary artery and corpus cavernosum produced by BAY K 8644 or N-nitro-L-arginine. Biochem Biophys Res Commun 1992;186:1522–1527.

    CAS  PubMed  Google Scholar 

  181. Lovren F, O’Neill SK, Bieger D, Igbal N, Knaus EE, Triggle CR. Nitric oxide, a possible mediator of 1,4-dihydropyridine-induced photorelaxation of vascular smooth muscle. BrJ Pharmacol 1996;118:879–884.

    CAS  Google Scholar 

  182. Kubaszewski E, Peters A, McClain S, Bohr D, Malinski T. Light-activated release of nitric oxide from vascular smooth muscle of normotensive and hypertensive rats. Biochem Biophys Res Commun 1994;200:213–218.

    Article  CAS  PubMed  Google Scholar 

  183. Chang KC, Chong WS, Park BW, Seung BW, Chun GW, Lee IJ, Park PS. NO-and NO2-carrying molecules potentiate photorelaxation in rat trachea and aorta. Biochem Biophys Res Commun 1993;191:509–514.

    CAS  PubMed  Google Scholar 

  184. Charpie JR, Peters A, Webb RC. A photoactivable source of relaxing factor in genetic hypertension. Hypertension 1994;23:894–898.

    CAS  PubMed  Google Scholar 

  185. O’Neill SK, Triggle CR. Unpublished observations 1994.

    Google Scholar 

  186. Bauer JA, Fung HL. Photochemical generation of nitric oxide from nitro-containing compounds: Possible relation to vascular photorelaxation phenomena. Life Sci 1994;54:L1–L4.

    Article  Google Scholar 

  187. Venturini CM, Palmer RM, Moncada S. Vascular smooth muscle contains a depletable store of a vasodilator which is light-activated and restored by donors of nitric oxide. J Pharmacol Exp Ther 1993;266:1497–1500.

    CAS  PubMed  Google Scholar 

  188. Goud C, Watts SW, Webb RC. Photorelaxation is not attenuated by inhibition of the nitric oxide-cGMP pathway. J Vasc Res 1996;33:299–307.

    CAS  PubMed  Google Scholar 

  189. Megson IL, Flitney FW, Bates J, Webster R. Repriming of vascular smooth muscle photorelaxation is dependent upon endothlium-derived nitric oxide. Endothelium 1995;3:39–46.

    CAS  Google Scholar 

  190. Megson IL, Holmes SA, Magid KS, Pritchard RJ, Flitney FW. Selective modifiers of glutathione biosynthesis and ‘repriming’ of vascular smooth muscle photorelaxation. Br J Pharmacol 2000;130:1575–1580.

    Article  CAS  PubMed  Google Scholar 

  191. Venturini CM, Palmer RM, Moncada S. Vascular smooth muscle contains a depletable store of a vasodilator which is light-activated and restored by donors of nitric oxide. J Pharmacol Exp Ther 1993;266:1497–1500.

    CAS  PubMed  Google Scholar 

  192. Lovren F, Triggle CR. Involvement of nitrosothiols, nitric oxide and voltage-gated K+ channels in photorelaxation of vascular smooth muscle. Eur J Pharmacol 1998;347:215–221.

    Article  CAS  PubMed  Google Scholar 

  193. Andrews KL, McGuire JJ, Triggle CR. Characterization of vascular smooth muscle photorelaxation in thoracic aorta from NOS knockout mice. The Pharmacologist 2002;44: A214, 130.12.

    Google Scholar 

  194. Hogg N, Singh RJ, Kalyanaraman B. The role of glutathione in the transport and catabolism of nitric oxide. FEBS Lett 1996;382:223–228.

    Article  CAS  PubMed  Google Scholar 

  195. Hogg N, Singh RJ, Konorev E, Joseph J, Kalyanaraman B. S-Nitrosoglutathione as a substrate for gammaglutamyl transpeptidase. Biochem J 1997;323(Pt 2):477–481.

    CAS  PubMed  Google Scholar 

  196. Singh RJ, Hogg N, Joseph J, Kalyanaraman B. Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 1996;271:18596–18603.

    CAS  PubMed  Google Scholar 

  197. Singh RJ, Hogg N, Goss SP, Antholine WE, Kalyanaraman B. Mechanism of superoxide dismutase/H(2)O(2)-mediated nitric oxide release from S-nitrosoglutathione-role of glutamate. Arch Biochem Biophys 1999;372:8–15.

    Article  CAS  PubMed  Google Scholar 

  198. Nikitovic D, Holmgren A. S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem 1996;271:19180–19185.

    CAS  PubMed  Google Scholar 

  199. Gordge MP, Addis P, Noronha-Dutra AA, Hothersall JS. Cell-mediated biotransformation of S-nitrosoglutathione. Biochem Pharmacol 1998;55:657–665.

    Article  CAS  PubMed  Google Scholar 

  200. Trujillo M, Alvarez MN, Peluffo G, Freeman BA, Radi R. Xanthine oxidase-mediated decomposition of S-nitrosothiols. J Biol Chem 1998;273:7828–7834.

    CAS  PubMed  Google Scholar 

  201. Jensen DE, Belka GK, Du Bois GC. S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme. Biochem J 1998;331(Pt 2):659–668.

    CAS  PubMed  Google Scholar 

  202. Keseru GM, Volk B, Balogh GT. Cytochrome P450 catalyzed nitric oxide synthesis: A theoretical study. J Biomol Struct Dyn 2000;17:759–767.

    CAS  PubMed  Google Scholar 

  203. Dubbin PN, Zambetis M, Dusting GJ. Inhibition of endothelial nitric oxide biosynthesis by N-nitro-L-arginine. Clin Exp Pharmacol Physiol 1990;17:281–286.

    CAS  PubMed  Google Scholar 

  204. Matsumoto T, Kinoshita M, Toda N. Mechanisms of endothelium-dependent responses to vasoactive agents in isolated porcine coronary arteries. J Cardiovasc Pharmacol 1993;21:228–234.

    CAS  PubMed  Google Scholar 

  205. Wang YX, Poon CI, Pang CC. Vascular pharmacodynamics of NG-nitro-L-arginine methyl ester in vitro and in vivo. J Pharmacol Exp Ther 1993;267:1091–1099.

    CAS  PubMed  Google Scholar 

  206. Pfeiffer S, Leopold E, Schmidt K, Brunner F, Mayer B. Inhibition of nitric oxide synthesis by NG-nitro-L-arginine methyl ester (L-NAME): Requirement for bioactivation to the free acid, NG-nitro-L-arginine. Br J Pharmacol 1996;118:1433–1440.

    CAS  PubMed  Google Scholar 

  207. Dusting GJ, Read MA, Stewart AG. Endothelium-derived relaxing factor released from cultured cells: Differentiation from nitric oxide. Clin Exp Pharmacol Physiol 1988;15:83–92.

    CAS  PubMed  Google Scholar 

  208. Guilmard C, Auguet M, Chabrier PE. Comparison between endothelial and neuronal nitric oxide pathways in rat aorta and gastric fundus. Nitric Oxide 1998;2:147–154.

    Article  CAS  PubMed  Google Scholar 

  209. Sobey CG, Faraci FM. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles. Stroke 1997;28:837–842.

    CAS  PubMed  Google Scholar 

  210. Brunner F, Schmidt K, Nielsen EB, Mayer B. Novel guanylyl cyclase inhibitor potently inhibits cyclic GMP accumulation in endothelial cells and relaxation of bovine pulmonary artery. J Pharmacol Exp Ther 1996;277:48–53.

    CAS  PubMed  Google Scholar 

  211. MacKenzie A, Martin W. Loss of endothelium-derived nitric oxide in rabbit aorta by oxidant stress: Restoration by superoxide dismutase mimetics. Br J Pharmacol 1998;124:719–728.

    Article  CAS  PubMed  Google Scholar 

  212. Dowell FJ, Hamilton CA, McMurray J, Reid JL. Effects of a xanthine oxidase/hypoxanthine free radical and reactive oxygen species generating system on endothelial function in New Zealand white rabbit aortic rings. J Cardiovasc Pharmacol 1993;22:792–797.

    CAS  PubMed  Google Scholar 

  213. Girard P, Sercombe R, Sercombe C, Le Lem G, Seylaz J, Potier P. A new synthetic flavonoid protects endothelium-derived relaxing factor-induced relaxation in rabbit arteries in vitro: Evidence for superoxide scavenging. Biochem Pharmacol 1995;49:1533–1539.

    Article  CAS  PubMed  Google Scholar 

  214. Cherry PD, Omar HA, Farrell KA, Stuart JS, Wolin MS. Superoxide anion inhibits cGMP-associated bovine pulmonary arterial relaxation. Am J Physiol 1990;259:H1056–H1062.

    CAS  PubMed  Google Scholar 

  215. MacKenzie A, Filippini S, Martin W. Effects of superoxide dismutase mimetics on the activity of nitric oxide in rat aorta. Br J Pharmacol 1999;127:1159–1164.

    Article  CAS  PubMed  Google Scholar 

  216. Hansen K, Nedergaard OA. Methodologic aspects of acetylcholine-evoked relaxation of rabbit aorta. J Pharmacol Toxicol Methods 1999;41:153–159.

    Article  CAS  PubMed  Google Scholar 

  217. Dudgeon S, Benson DP, MacKenzie A, Paisley-Zyszkiewicz K, Martin W. Recovery by ascorbate of impaired nitric oxide-dependent relaxation resulting from oxidant stress in rat aorta. Br J Pharmacol 1998;125:782–786.

    Article  CAS  PubMed  Google Scholar 

  218. Schnackenberg CG, Wilcox CS. The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes. Kidney Int 2001;59:1859–1864.

    Article  CAS  PubMed  Google Scholar 

  219. Danser AH, Tom B, de Vries R, Saxena PR. L-NAME-resistant bradykinin-induced relaxation in porcine coronary arteries is NO-dependent: Effect of ACE inhibition. Br J Pharmacol 2000;131:195–202.

    Article  CAS  PubMed  Google Scholar 

  220. Emsley AM, Jeremy JY, Gomes GN, Angelini GD, Plane F. Investigation of the inhibitory effects of homocysteine and copper on nitric oxide-mediated relaxation of rat isolated aorta. Br J Pharmacol 1999;126:1034–1040.

    Article  CAS  PubMed  Google Scholar 

  221. Simon BC, Cohen RA. EDTA influences reactivity of isolated aorta from hypercholesterolemic rabbits. Am J Physiol 1992;262:H1606–H1610.

    CAS  PubMed  Google Scholar 

  222. Plane F, Wigmore S, Angelini GD, Jeremy JY. Effect of copper on nitric oxide synthase and guanylyl cyclase activity in the rat isolated aorta. Br J Pharmacol 1997;121:345–350.

    CAS  PubMed  Google Scholar 

  223. Mugge A, Elwell JH, Peterson TE, Harrison DG. Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. Am J Physiol 1991;260:C219–C225.

    CAS  PubMed  Google Scholar 

  224. Didion SP, Hathaway CA, Faraci FM. Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD. Am J Physiol Heart Circ Physiol 2001;281:H1697–H1703.

    CAS  PubMed  Google Scholar 

  225. Omar HA, Cherry PD, Mortelliti MP, Burke-Wolin T, Wolin MS. Inhibition of coronary artery super-oxide dismutase attenuates endothelium-dependent and-independent nitrovasodilator relaxation. Circ Res 1991;69:601–608.

    CAS  PubMed  Google Scholar 

  226. Saiag B, Shacoori V, Bodin P, Pape D, Allain H, Burnstock G. Free radical involvement in endothelium-dependent responses of the rat thoracic aorta in moderate hypoxic conditions. Eur J Pharmacol 1999;372:57–63.

    CAS  PubMed  Google Scholar 

  227. Karasu C. Time course of changes in endothelium-dependent and-independent relaxation of chronically diabetic aorta: Role of reactive oxygen species. Eur J Pharmacol 2000;392:163–173.

    Article  CAS  PubMed  Google Scholar 

  228. Andriambeloson E, Stoclet JC, Andriantsitohaina R. Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. J Cardiovasc Pharmacol 1999;33:248–254.

    Article  CAS  PubMed  Google Scholar 

  229. Adachi T, Cohen RA. Decreased aortic glutathione levels may contribute to impaired nitric oxide-induced relaxation in hypercholesterolaemia. Br J Pharmacol 2000;129:1014–1020.

    Article  CAS  PubMed  Google Scholar 

  230. Crack P, Cocks T. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery. Br J Pharmacol 1992;107:566–572.

    CAS  PubMed  Google Scholar 

  231. Hutcheson IR, Chaytor AT, Evans WH, Griffith TM. Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication. Role of Gap junctions and phospholipase A2. Circ Res 1999;84:53–63.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Andrews, K.L., Triggle, C.R., Ellis, A. (2004). NO and the Vasculature: Where Does It Come from and What Does It Do?. In: Jugdutt, B.I. (eds) The Role of Nitric Oxide in Heart Failure. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7960-5_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7960-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7736-4

  • Online ISBN: 978-1-4020-7960-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics