Skip to main content

On Interpolation Problems in Cn

  • Chapter
  • 311 Accesses

Part of the book series: Advances in Complex Analysis and Its Applications ((ACAA,volume 3))

Abstract

We will consider under what conditions an analytic variety in n is an interpolating variety for weighted spaces of entire functions, which is one of fundamental problems in several complex variables. Interest in this area arises from connections and applications of such questions to other problems such as representation of solutions of partial differential equations, deconvolution, and the Nullstellensatz. We shall discuss some of recent results on this subject, with a special attention given to those by the authors and their collaborators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berenstein C.A., Chang D.C., and Li B.Q., Interpolating varieties and counting functions in n, Michigan Math. J. 42 (1995), 419–434.

    MathSciNet  Google Scholar 

  2. Berenstein C.A. and Gay R., Complex analysis and special topics in harmonic analysis, Springer-Verlag, New York, 1995

    Google Scholar 

  3. Berenstein C.A., Gay R., Vidras A. and Yger A., Residue currents and Bezout identities, Progress in Mathematics, 114, Birkhäuser Verlag, Basel, 1993.

    Google Scholar 

  4. Berenstein C.A., Kawai T., and Struppa D.C., Interpolating varieties and the Fabry-Ehrenpreis-Kawai gap theorem, Adv. Math. 122 (1996), 280–310.

    MathSciNet  Google Scholar 

  5. Berenstein C.A. and Li B.Q., Interpolating varieties for weighted spaces of entire functions in n, Publ. Mat. 38 (1994), 157–173.

    MathSciNet  Google Scholar 

  6. Berenstein C.A. and Li B.Q., Interpolating varieties for spaces of meromorphic functions, J. Geom. Anal. 5 (1995), 1–48.

    MathSciNet  Google Scholar 

  7. Berenstein C.A., Li B.Q. and Vidras A., Geometric characterization of interpolating varieties for the (FN)-space A 0p of entire functions, Canad. J. Math. 47 (1995), 28–43.

    MathSciNet  Google Scholar 

  8. Berenstein C.A. and Struppa D.C., Complex analysis and convolution equations, in “Several Complex Variables, V” (G.M. Henkin, Ed.), Encyclopaedia of Math. Sciences, 54, 1–108, Springer-Verlag, New York, 1993.

    Google Scholar 

  9. Berenstein C.A. and Taylor B.A., Interpolation problems in nwith applications to harmonic analysis, J. Analyse Math. 38 (1980), 188–254.

    MathSciNet  Google Scholar 

  10. Berenstein C.A. and Taylor B.A., A new look at interpolating theory for entire functions of one variable, Adv. in Math. 33 (1979), 109–143.

    Article  MathSciNet  Google Scholar 

  11. Berenstein C.A. and Taylor B.A., On the geometry of interpolating varieties, Seminar Pierre Lelong-Henri Skoda (Analysis), 1980/1981, and Colloquium at Wimereux, May 1981, pp. 1–25, Lecture Notes in Math., 919, Springer, Berlin-New York, 1982.

    Google Scholar 

  12. Berenstein C.A. and Yger A., Ideas generated by exponential polynomials, Adv. in Math. 60 (1986), 1–80.

    Article  MathSciNet  Google Scholar 

  13. Berenstein C.A. and Yger A., Exponential polynomials and D-modules, Compositio Math. 95 (1995), 131–181.

    MathSciNet  Google Scholar 

  14. Berenstein C.A. and Yger A., On Lojasiewicz-type inequalities for exponential polynomials, J. Math. Anal. Appl. 129 (1988), 166–195.

    Article  MathSciNet  Google Scholar 

  15. Berenstein C.A. and Yger A., Analytic Bézout identities, Adv. in Appl. Math. 10 (1989), 51–74.

    Article  MathSciNet  Google Scholar 

  16. Berndtsson B., A formula for interpolation and division in n, Math. Ann. 263 (1983), 399–418.

    Article  MATH  MathSciNet  Google Scholar 

  17. Carlson J., A moving lemma for the transcendental Bézout problem, Ann. of Math. (2) 103 (1976), 305–330.

    MathSciNet  Google Scholar 

  18. Cornalba M. and Shiffman B., A counterexample to the transcendental Bézout problem, Ann. of Math. (2) 96 (1972), 402–406.

    MathSciNet  Google Scholar 

  19. Ehrenpreis L., Fourier analysis in several variables, Interscience, New York, 1970.

    Google Scholar 

  20. Ehrenpreis L. and Malliavin P., Invertiable operators and interpolation in AU spaces, J. Math. Pures Appl. (9) 53 (1974), 165–182.

    MathSciNet  Google Scholar 

  21. Griffiths P.A., Two theorems on extensions of holomorphic mappings, Invent. Math. 14 (1971), 27–62.

    Article  MATH  MathSciNet  Google Scholar 

  22. Griffiths P.A., On the Bezout problem for entire analytic sets, Ann. of Math. (2) 100 (1974), 533–552.

    MATH  MathSciNet  Google Scholar 

  23. Griffiths P.A., Entire holomorphic mappings in one and several complex variables, Princeton University Press, Princeton, N. J., 1976.

    Google Scholar 

  24. Gruman L., The area of analytic varieties in n, Math. Scand. 41 (1977), 365–397.

    MATH  MathSciNet  Google Scholar 

  25. Grishin A.F. and Russakovskii A.M., Free interpolation by entire function, (Russian) Teor. Funskii Funktsional. Anal. i Prilozhen, No. 44 (1985), 32–42.

    Google Scholar 

  26. Hörmander L., Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943–949.

    MATH  MathSciNet  Google Scholar 

  27. Hörmander L., An introduction to complex analysis in several variables, North-Holland, Amsterdam, 1990.

    Google Scholar 

  28. Ji S., Bézout estimate for entire holomorphic maps and their Jacobians, Amer. J. Math. 117 (1995), 395–403.

    MATH  MathSciNet  Google Scholar 

  29. Leont’ev A.F., The representation of functions by generalized Dirichlet series, Uspehi Mat. Nauk 24 (1969), no. 2, 97–164.

    MathSciNet  Google Scholar 

  30. Levinson N., Gap and density theorems, American Mathematical Society, New York, 1940.

    Google Scholar 

  31. Li B.Q., On the Bézout problem and area of interpolating varieties in n, II, Amer. J. Math. 120 (1998), 1191–1198.

    MATH  MathSciNet  Google Scholar 

  32. Li B.Q., Zero sets, maximum moduli, and Jacobians of holomorphic mappings, Complex Variables Theory Appl. 43 (2001), 341–350.

    MATH  MathSciNet  Google Scholar 

  33. Li B.Q., Interpolating varieties for entire functions of minimal type, preprint.

    Google Scholar 

  34. Li B.Q., On the size of discrete entire analytic sets, preprint.

    Google Scholar 

  35. Li B.Q., Interpolation theory in n, forthcoming.

    Google Scholar 

  36. Li B.Q., and Taylor B.A., On the Bézout problem and area of interpolating varieties in n, Amer. J. Math. 118 (1996), 989–1010.

    MathSciNet  Google Scholar 

  37. Li B.Q. and Villamor E., Interpolating multiplicity varieties in n, J. Geom. Anal. 11 (2001), 91–101.

    MathSciNet  Google Scholar 

  38. Li B.Q. and Villamor E., Interpolation in the unit ball of n, Israel J. Math. 123 (2001), 341–358.

    MathSciNet  Google Scholar 

  39. Massaneda X., A−p-interaction in the unit ball, J. London Math. Soc. (2) 52 (1995), 391–401.

    MATH  MathSciNet  Google Scholar 

  40. Massaneda X., A−∞ interpolation in the ball, Proc. Edinburgh Math. Soc. (2) 41 (1998), 359–367.

    MATH  MathSciNet  Google Scholar 

  41. Ohsawa T., On the extension of L2holomorphic functions II, Publ. Res. Inst. Math. Soc. 24 (1988), 265–275.

    MATH  MathSciNet  Google Scholar 

  42. Oh’uchi S., Disjoint union of complex affine subspaces interpolating for A p , Forum Math. 11 (1999), 369–384.

    MathSciNet  Google Scholar 

  43. Squires W.A., Necessary conditions for universal interpolation in ɛ′, Canad. J. Math. 33 (1981), 1356–1364.

    MathSciNet  Google Scholar 

  44. Squires W.A., Geometric conditions for universal interpolation in ɛ′, Trans. Amer. Math. Soc. 280 (1983), 401–413.

    MATH  MathSciNet  Google Scholar 

  45. Seip K., Beurling type density theorems in the unit disk, Invent. Math. 113 (1993), 21–39.

    Article  MATH  MathSciNet  Google Scholar 

  46. Skoda H., Application des techniques L2à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5 (1972), 545–579.

    MATH  MathSciNet  Google Scholar 

  47. Stoll W., A Bézout estimate for complete intersection, Ann. of Math. (2) 96 (1972), 361–401.

    MATH  MathSciNet  Google Scholar 

  48. Stoll W., Introduction to value distribution theory of meromorphic maps, Springer, New York, 1982.

    Google Scholar 

  49. Vidras A., On a theorem of Pólya and Levinson, J. Math. Anal. Appl. 183 (1994), 216–232.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Berenstein, C.A., Li, B.Q. (2004). On Interpolation Problems in Cn. In: Barsegian, G., Laine, I., Yang, C.C. (eds) Value Distribution Theory and Related Topics. Advances in Complex Analysis and Its Applications, vol 3. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7951-6_14

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7951-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7950-4

  • Online ISBN: 978-1-4020-7951-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics