Skip to main content

Abstract

Working memory is a mechanism for short-term active storage of information and for processing stored information. Working memory is an important concept to understand prefrontal cortical functions. Although evidences for temporary storage mechanisms of information have been accumulated, little is known about neuronal mechanisms for processing information. To understand how information is processed in the nervous system, we need to know what information single-neuron activity represents and how represented information by singleneuron activities changes along the temporal sequence of the trial. We used two kinds of oculomotor version of the delayedresponse (ODR) tasks and examined what information prefrontal single-neuron activity represents. We found that all cue-period activity represented cue positions and that most of delay-period activity represented cue positions. However, most of oculomotor activity represented saccade directions. These results suggest that prefrontal neurons participate in sensory-motor transformation. To examine prefrontal participation in sensory-motor transformation, we analyzed single-neuron activities using a population vector analysis. As a result, we found that information represented by a population of PFC neurons changes gradually during the delay period from information for visual cue to that for saccade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asaad WF, Rainer G, Miller EK (2000) Task-specific neural activity in the primate prefrontal cortex. J Neurophysiol 84:451–459.

    CAS  PubMed  Google Scholar 

  • Baddeley A (1986) Working Memory. Oxford: Oxford University Press.

    Google Scholar 

  • Boch RA, Goldberg ME (1989) Participation of prefrontal neurons in the preparation of visually guided eye movements in the rhesus monkey. J Neurophysiol 61:1064–1084.

    CAS  PubMed  Google Scholar 

  • Carlson S, Rama P, Tanila H, Linnankoski I, Mansikka H (1997) Dissociation of mnemonic coding and other functional neuronal processing in the monkey prefrontal cortex. J Neurophysiol 77:761–774.

    CAS  PubMed  Google Scholar 

  • Collette F, Van der Linden M (2002) Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev 26:105–125.

    Article  PubMed  Google Scholar 

  • Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001a) The sensory nature of mnemonic representation in the primate prefrontal cortex. Nature Neurosci 4:311–316.

    Article  CAS  PubMed  Google Scholar 

  • Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001b) Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. J Neurosci 21:3646–3655.

    CAS  PubMed  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–482.

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S (2001) Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci Res 39:147–165.

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Inoue M (2000) Neuronal interactions related to working memory processes in the primate prefrontal cortex revealed by crosscorrelation analysis. Cereb Cortex 10:535–551.

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Kubota K (1994) Working memory and prefrontal cortex. Neurosci Res 21:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Takeda K (2002a) Information processes in the primate prefrontal cortex in relation to working memory processes. Rev Neurosci 13:313–346.

    PubMed  Google Scholar 

  • Funahashi S, Takeda K (2002b) Population vector analysis by primate prefrontal neuron activities. J Biol Physics 28:527–537

    Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349.

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63:814–831.

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993a) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas.” J Neurosci 13:1479–1497.

    CAS  PubMed  Google Scholar 

  • Funahashi S, Chafee MV, Goldman-Rakic PS (1993b) Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365:753–756.

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Inoue M, Kubota K (1997) Delay-period activity in the primate prefrontal cortex encoding multiple spatial positions and their order of presentation. Behav Brain Res 84:203–223.

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36:61–78.

    CAS  PubMed  Google Scholar 

  • Fuster JM. (1997) The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe, (3rd Ed.), Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654.

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419.

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation of the neuronal population vector. Science 243:234–236.

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Handbook of Physiology: The Nervous System: Higher Functions of the Brain, Sect 1, vol V (Plum F, ed), pp 373–417. American Physiological Society.

    Google Scholar 

  • Goldman-Rakic PS, Funahashi S, Bruce CJ (1990) Neocortical memory circuits. Cold Spring Harbor Symp Quant Biol 55:1025–1038.

    CAS  PubMed  Google Scholar 

  • Hoshi E, Shima K, Tanji J (2000) Neuronal activity in the primate prefrontal cortex in the process of motor selection based on two behavioral rules. J Neurophysiol 83:2355–2373.

    CAS  PubMed  Google Scholar 

  • Joseph JP, Barone P (1987) Prefrontal unit activity during a delayed oculomotor task in the monkey. Exp Brain Res 67:460–468.

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Funahashi S (1982) Direction-specific activities of dorsolateral prefrontal and motor cortex pyramidal tract neurons during visual tracking. J Neurophysiol 47:362–376.

    CAS  PubMed  Google Scholar 

  • Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34:337–347.

    CAS  PubMed  Google Scholar 

  • Mikami A, Ito S, Kubota K (1982) Visual response properties of dorsolateral prefrontal neurons during visual fixation task. J Neurophysiol 47:593–605.

    CAS  PubMed  Google Scholar 

  • Miller EK (2000) The prefrontal cortex and cognitive control. Nature Rev Neurosci 1:59–65.

    CAS  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202.

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167.

    CAS  PubMed  Google Scholar 

  • Miyake A, Shah P (1999) Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. Cambridge University Press, Cambridge.

    Google Scholar 

  • Niki H, Watanabe M (1976) Prefrontal unit activity and delayed response: relation to cue location versus direction of response Brain Res 105:79–88.

    Article  CAS  PubMed  Google Scholar 

  • Petrides M (1994) Frontal lobes and working memory: evidence from investigations of the effects of cortical excisions in non-human primates. In: Handbook of Neuropsychology, vol 9 (Boller F, Spinnler H, and Hendler JA, eds), pp 59–82. Elsevier, Amsterdam.

    Google Scholar 

  • Rainer G, Asaad WF, Miller EK (1998) Memory fields of neurons in the primate prefrontal cortex. Proc Natl Acad Sci USA 95:15008–15013.

    Article  CAS  PubMed  Google Scholar 

  • Rainer G, Rao SC, Miller EK (1999) Prospective coding for objects in primate prefrontal cortex. J Neurosci 19:5493–5505.

    CAS  PubMed  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276:821–824.

    CAS  PubMed  Google Scholar 

  • Romo R, Brody CD, Hernandez A, Lemus L (1999) Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399:470–473.

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T (1987) Properties of neuronal activity related to a visual reaction time task in the monkey prefrontal cortex. J Neurophysiol 58:1080–1099.

    CAS  PubMed  Google Scholar 

  • Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobe. Science 283:1657–1661.

    CAS  PubMed  Google Scholar 

  • Stuss DT, Knight RT (2002) Principles of Frontal Lobe Function. Oxford University Press, New York.

    Google Scholar 

  • Suzuki H, Azuma M (1983) Topographic studies on visual neurons in the dorsolateral prefrontal cortex of the monkey. Exp Brain Res 53:47–58.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Funahashi S (2002) Prefrontal task-related activity representing visual cue location or saccade direction in spatial working memory tasks. J Neurophysiol 87:567–588.

    PubMed  Google Scholar 

  • Watanabe M (1986) Prefrontal unit activity during delayed conditional go/no-go discrimination in the monkey. I. Relation to the stimulus. Brain Res 382:1–14.

    CAS  PubMed  Google Scholar 

  • Wilson FAW, O’Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Funahashi, S. (2004). Information Processing in the Primate Prefrontal Cortex. In: Otani, S. (eds) Prefrontal Cortex: From Synaptic Plasticity to Cognition. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7949-4_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7949-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7766-1

  • Online ISBN: 978-1-4020-7949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics