Skip to main content

Dopamine Modulation of Prefrontal Cortical Neural Ensembles and Synaptic Plasticity

Potential Involvement in Schizophrenia

  • Chapter
Prefrontal Cortex: From Synaptic Plasticity to Cognition

Abstract

The prefrontal cortex has been implicated in executive functions, and it can become dysfunctional in psychiatric disorders such as schizophrenia. Prefrontal pyramidal neurons exhibit dynamic membrane potential activity in vivo, which depends on local microcircuits and synaptic inputs from other brain structures and may define neural ensembles encoding information. Mesocortical dopamine modulates these membrane potential states, allowing for long-term synaptic plasticity in the prefrontal cortex. Dopamine-mediated ensemble coding reinforcement may therefore be important for associative learning and executive functions. Dysfunction of associative learning and neural plasticity induced by dopamine abnormalities in the prefrontal cortex may be central components in the pathophysiology of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR. Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719.

    CAS  PubMed  Google Scholar 

  • Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589.

    CAS  PubMed  Google Scholar 

  • Al-Amin HA, Shannon Weickert C, Weinberger DR. Lipska BK (2001) Delayed onset of enhanced MK-801-induced motor hyperactivity after neonatal lesions of the rat ventral hippocampus. Biol Psychiatry 49:528–539.

    Article  CAS  PubMed  Google Scholar 

  • Andreasen NC, O’Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL, Hichwa RD (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 349:1730–1734.

    Article  CAS  PubMed  Google Scholar 

  • Asaad WF, Rainer G, Miller EK, (1998) Neural activity in the primate prefrontal cortex during associative learning. Neuron 21:1399–1407.

    Article  CAS  PubMed  Google Scholar 

  • Ashe PC, Chlan-Fourney J, Juorio AV, Li XM (2002) Brain-derived neurotrophic factor (BDNF) mRNA in rats with neonatal ibotenic acid lesions of the ventral hippocampus. Brain Res 956:126–135.

    Article  CAS  PubMed  Google Scholar 

  • Balkowiec A, Katz DM (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci 22:10399–10407.

    CAS  PubMed  Google Scholar 

  • Benes FM (1995) Altered glutamatergic and GABAergic mechanisms in the cingulate cortex of the schizophrenic brain. Arch Gen Psychiatry 12:1019–1024.

    Google Scholar 

  • Bertolino A, Saunders RC, Mattay VS, Bachevalier J, Frank JA, Weinberger DR (1997) Altered development of prefrontal neurons in rhesus monkeys with neonatal mesial temporo-limbic lesions: a proton magnetic resonance spectroscopic imaging study. Cereb Cortex 7:740–748.

    Article  CAS  PubMed  Google Scholar 

  • Bertolino A, Knable MB, Saunders RC, Callicott JH, Kolachana B, Mattay VS, Bachevalier J, Frank JA, Egan M, Weinberger DR (1999) The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biol Psychiatry 45:660–667.

    Article  CAS  PubMed  Google Scholar 

  • Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24:139–166.

    Article  CAS  PubMed  Google Scholar 

  • Bi G-Q, Poo M-M (1999) Distributed Synaptic Modification in Neural Networks Induced by Patterned Stimulation. Nature 401:792–796.

    Article  CAS  PubMed  Google Scholar 

  • Bleuler E (1952) Dementia praecox; or, The group of schizophrenias. International universities press, New York.

    Google Scholar 

  • Blond O, Crepel F, Otani S (2002) Long-term potentiation in rat prefrontal slices facilitated by phased application of dopamine. Eur. J. Pharmacol. 438:115–116.

    Article  CAS  PubMed  Google Scholar 

  • Branchereau P, Van Bockstaele EJ, Chan J, Pickel VM (1996) Pyramidal neurons in rat prefrontal cortex show a complex synaptic response to single electrical stimulation of the locus coeruleus region: evidence for antidromic activation and GABAergic inhibition using in vivo intracellular recording and electron microscopy. Synapse 22:313–331.

    Article  CAS  PubMed  Google Scholar 

  • Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, Goldberg TE, Weinberger DR (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078–1092.

    Article  CAS  PubMed  Google Scholar 

  • Carr DB, Sesack SR (2000a) GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 38:114–123.

    Article  CAS  PubMed  Google Scholar 

  • Carr DB, Sesack SR (2000b) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J. Neurosci. 20:3864–3873.

    CAS  PubMed  Google Scholar 

  • Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen, JD (1998) Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 155:1285–1287.

    CAS  PubMed  Google Scholar 

  • Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 90:9576–9580.

    CAS  PubMed  Google Scholar 

  • Chang JY, Janak PH, Woodward DJ (2000) Neuronal and behavioral correlations in the medial prefrontal cortex and nucleus accumbens during cocaine self-administration by rats. Neuroscience 99:433–443.

    Article  CAS  PubMed  Google Scholar 

  • Chlan-Fourney J, Ashe P, Nylen K, Juorio AV, Li XM (2002) Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res. 954:11–20.

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386:604–608.

    Article  CAS  PubMed  Google Scholar 

  • Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio A (1994) The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science 264:1102–1105.

    CAS  PubMed  Google Scholar 

  • Deadwyler SA, Bunn T, Hampson RE (1996) Hippocampal ensemble activity during spatial delayed-nonmatch-to-sample performance in rats. J Neurosci 16:354–372.

    CAS  PubMed  Google Scholar 

  • Eccles JC (1971) Functional significance of arrangement of neurones in cell assemblies. Arch Psychiatr Nervenkr 215:92–106.

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65:1464–1483.

    CAS  PubMed  Google Scholar 

  • Fuster JM (1997) The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (3rd ed), Lippincott-Raven, Philadelphia.

    Google Scholar 

  • Fuster JM, Bodner M, Kroger JK (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405:347–351.

    Article  CAS  PubMed  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73.

    CAS  PubMed  Google Scholar 

  • Glick SD, Greenstein S (1972) Amnesia following cortical brain damage in mice. Behav Biol 7:573–583.

    CAS  PubMed  Google Scholar 

  • Gold JM, Bish JA, Lannone VN, Hobart MP, Queern CA, Buchanan RW (2000) Effects of contextual processing on visual conditional associative learning in schizophrenia. Biol Psychiatry 48:406–414.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg RB, Fuster JM, Alvarez-Pelaez R (1980) Frontal cell activity during delayed response performance in squirrel monkey (Saimiri sciureus). Physiol Behav 25:425–432.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485.

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1999) The Physiological Approach: Functional Architecture of Working Memory and Disordered Cognition in Schizophrenia. Biol Psychiatry 46:650–661.

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, O’Donnell P (2001) Network synchrony in the nucleus accumbens in vivo. J Neurosci 21:4498–4504.

    CAS  PubMed  Google Scholar 

  • Goto Y, O’Donnell P (2002) Delayed mesolimbic system alteration in a developmental animal model of schizophrenia. J Neurosci 22:9070–9077.

    CAS  PubMed  Google Scholar 

  • Goto Y, O’Donnell P (2003) Altered prefrontal cortex-nucleus accumbens information processing in a developmental animal model of schizophrenia. Ann N Y Acad Sci (in press)

    Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24.

    Article  CAS  PubMed  Google Scholar 

  • Grecksch G, Bernstein HG, Becker A, Höllt V, Bogerts B (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacol 20:525–532.

    CAS  Google Scholar 

  • Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411:86–89.

    Article  CAS  PubMed  Google Scholar 

  • Gulledge AT, Stuart GJ (2003) Excitatory actions of GABA in the cortex. Neuron 37:299–309.

    Article  CAS  PubMed  Google Scholar 

  • Gurden H, Tassin J-P, Jay TM (1999) Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience 94:1019–1027.

    Article  CAS  PubMed  Google Scholar 

  • Gurden H, Takita M, Jay TM (2000) Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci 20:RC106.

    CAS  PubMed  Google Scholar 

  • Harvey J, Lacey MG (1997) A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J Neurosci 17:5271–5280.

    CAS  PubMed  Google Scholar 

  • Hebb DO (1949) The Organization of Behavior: A Neuropsychological Theory. John Wiley and Sons, New York.

    Google Scholar 

  • Heresco-Levy U, Javitt DC (1998) The role of N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission in the pathophysiology and therapeutics of psychiatric syndromes. Eur Neuropsychopharmacol 8:141–152.

    Article  CAS  PubMed  Google Scholar 

  • HernĂ¡ndez LĂ³pez S, Bargas J, Surmeier DJ, Reyes AD, Galarraga E (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17:3334–3342.

    PubMed  Google Scholar 

  • Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313:574–586.

    Article  CAS  PubMed  Google Scholar 

  • Jay TM, Glowinski J, Thierry AM (1989) Selectivity of the hippocampal projection to the prelimbic area of the prefrontal cortex in the rat. Brain Res 505:337–340.

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacol 20:201–225.

    CAS  Google Scholar 

  • Joel D, Tarrasch R, Feldon J, Weiner I (1997) Effects of electrolytic lesions of the medial prefrontal cortex or its subfields on 4-arm baited, 8-arm radial maze, two-way active avoidance and conditioned fear tasks in the rat. Brain Res 765:37–50.

    Article  CAS  PubMed  Google Scholar 

  • Kitano K, Cateau H, Kaneda K, Nambu A, Takada M, Fukai T (2002) Two-state membrane potential transitions of striatal spiny neurons as evidenced by numerical simulations and electrophysiological recordings in awake monkeys. J Neurosci 22:RC230.

    PubMed  Google Scholar 

  • Koh PO, Bergson C, Undie AS, Goldman-Rakic PS, Lidow MS (2003) Upregulation of the dopamine receptor-interacting protein, Calcyon, in patients with schizophrenia. Arch Gen Psychiatry 60: 311–319.

    CAS  PubMed  Google Scholar 

  • Konradi C, Heckers S (2001) Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 50:729–742.

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295:1729–1734.

    Article  CAS  PubMed  Google Scholar 

  • Krebs MO, Guillin O, Bourdell MC, Schwartz JC, Olie JP, Poirier MF, Sokoloff P (2000) Brain derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia. Mol Psychiatry 5:558–562.

    Article  CAS  PubMed  Google Scholar 

  • Kristan WB Jr, Gerstein GL (1970) Plasticity of synchronous activity in a small neural net. Science 169:1336–1339.

    PubMed  Google Scholar 

  • Kubota K (1975) Prefrontal unit activity during delayed-response and delayed-alternation performances. Jpn J Physiol 25:481–493.

    CAS  PubMed  Google Scholar 

  • Law-Tho D, Desce JM, Crepel F (1995) Dopamine favours the emergence of long-term depression versus long-term potentiation in slices of rat prefrontal cortex. Neurosci Lett 188:125–128.

    Article  CAS  PubMed  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194.

    CAS  PubMed  Google Scholar 

  • Levine MS, Altemus KL, Cepeda C, Cromwell HC, Crawford C, Ariano MA, Drago J, Sibley DR, Westphal H (1996a) Modulatory actions of dopamine on NMDA receptor-mediated responses are reduced in D1A-deficient mutant mice. J Neurosci 16:5870–5882.

    CAS  PubMed  Google Scholar 

  • Levine MS, Li Z, Cepeda C, Cromwell HC, Altemus KL (1996b) Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse 24:65–78.

    CAS  PubMed  Google Scholar 

  • Lewinsohn PM, Zieler RE, Libet J, Eyeberg S, Nielson G (1972) Short-term memory: a comparison between frontal and nonfrontal right-and left-hemisphere brain-damaged patients. J Comp Physiol Psychol 81:248–255.

    CAS  PubMed  Google Scholar 

  • Lewis BL, O’Donnell P (2000) Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential ‘up’ states in pyramidal neurons via D1 dopamine receptors. Cereb Cortex 10:1168–1175.

    CAS  PubMed  Google Scholar 

  • Lidow MS, Williams GV, Goldman-Rakic PS (1998) The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol Sci 19:136–140.

    Article  CAS  PubMed  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacol 23:223–239.

    CAS  Google Scholar 

  • Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacol 9:67–75.

    CAS  Google Scholar 

  • Lipska BK, Chrapusta SJ, Egan MF, Weinberger DR (1995) Neonatal excitotoxic ventral hippocampal damage alters dopamine response to mild repeated stress and to chronic haloperidol. Synapse 20:125–130.

    Article  CAS  PubMed  Google Scholar 

  • Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1996) Neonatal excitotoxic hippocampal damage in rats causes postpubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacol (Berl) 122:35–43.

    Google Scholar 

  • Lipska BK, Kolb B, Halim ND, Weinberger DR (2001a) Synaptic abnormalities in prefrontal cortex and nuclues accumbens of adult rats with neonatal hippocampal damage. Schizophr Res 49:47.

    Google Scholar 

  • Lipska BK, Khaing ZZ, Weickert CS, Weinberger DR (2001b) BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 14:135–144.

    Article  CAS  PubMed  Google Scholar 

  • Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam, B (2002) Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacol 27:47–54.

    Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Domino EF (1959) Study of a new schizophrenomimetic drug-Sernyl. Arch Gen Psychiatry 81:363–369.

    CAS  Google Scholar 

  • Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60:285–298.

    Article  PubMed  Google Scholar 

  • Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, Saper CB, Warach S (1999) Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 45:1128–1137.

    Article  CAS  PubMed  Google Scholar 

  • Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Saper CB, Rauch SL (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48:99–109.

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215.

    Article  CAS  PubMed  Google Scholar 

  • Martins Serra A, Jones SH, Toone B, Gray JA (2001) Impaired associative learning in chronic schizophrenics and their first-degree relatives: a study of latent inhibition and the Kamin blocking effect. Schizophr Res 48:273–289.

    CAS  PubMed  Google Scholar 

  • Mermelstein PG, Song WJ, Tkatch T, Yan Z, Surmeier DJ (1998) Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J Neurosci 18:6650–6661.

    CAS  PubMed  Google Scholar 

  • Messaoudi E, Ying SW, Kanhema T, Croll SD, Bramham CR (2002) Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci 22:7453–7461.

    CAS  PubMed  Google Scholar 

  • Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1:59–65.

    CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202.

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167.

    CAS  PubMed  Google Scholar 

  • Mulder AB, Nordquist R, Orgut O, Pennartz CM (2000) Plasticity of neuronal firing in deep layers of the medial prefrontal cortex in rats engaged in operant conditioning. In: Progress in Brain Research, vol 126 (Uylings HBM, Van Eden CG, De Bruin JPC, Feestra MGP, and Pennartz CMA, eds), pp 287–301, Elsevier, Amsterdam.

    Google Scholar 

  • Muller NG, Machado L, Knight RT (2002) Contributions of subregions of the prefrontal cortex to working memory: evidence from brain lesions in humans. J Cogn Neurosci 14:673–686.

    PubMed  Google Scholar 

  • Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215.

    Article  CAS  PubMed  Google Scholar 

  • Nicolelis MA, Ghazanfar AA, Faggin BM, Votaw S, Oliveira LM (1997) Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron 18:529–537.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell P (1999) Ensemble coding in the Nucleus Accumbens. Psychobiol 27:187–197.

    Google Scholar 

  • O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17:1–7.

    Google Scholar 

  • O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15:3622–3639.

    Google Scholar 

  • O’Donnell P, Grace AA (1998) Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters. Schizophr Bull 24:267–283.

    Google Scholar 

  • O’Donnell P, Greene J, Pabello N, Lewis BL, Grace AA (1999) Modulation of cell firing in the nucleus accumbens. Ann N Y Acad Sci 877:157–175.

    Google Scholar 

  • O’Donnell P, Lewis BL, Weinberger DR, Lipska BK (2002) Neonatal hippocampal damage alters electrophysiological properties of prefrontal cortical neurons in adult rats. Cereb Cortex 12:975–982.

    Google Scholar 

  • Otani S, Blond O, Desce JM, Crepel F (1998) Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex. Neuroscience 85:669–676.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco-Cano MT, Bargas J, Hernandez-Lopez S, Tapia D, Galarraga E (1996) Inhibitory action of dopamine involves a subthreshold Cs(+)-sensitive conductance in neostriatal neurons. Exp Brain Res 110:205–211.

    Article  CAS  PubMed  Google Scholar 

  • Peters YM, Lewis BL, O’Donnell P (2000) Synchronous activity in the ventral tegmental area and prefrontal cortex. Ann N Y Acad Sci 909:267–269.

    CAS  PubMed  Google Scholar 

  • Phillipson OT (1979) Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J Comp Neurol 187:117–143.

    CAS  PubMed  Google Scholar 

  • Ramsey NF, Koning HA, Welles P, Cahn W, van der Linden JA, Kahn RS (2002) Excessive recruitment of neural systems subserving logical reasoning in schizophrenia. Brain 125:1793–1807.

    Article  CAS  PubMed  Google Scholar 

  • Sams Dodd F, Lipska BK, Weinberger DR (1997) Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacol (Berl) 132:303–310.

    CAS  Google Scholar 

  • Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034.

    CAS  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27.

    CAS  PubMed  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263.

    Article  CAS  PubMed  Google Scholar 

  • Seidemann E, Arieli A, Grinvald A, Slovin H (2002) Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science 295:862–865.

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Carr DB (2002) Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav 77:513–517.

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Hawrylak VA, Melchitzky DS, Lewis DA (1998) Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cereb Cortex 8:614–622.

    Article  CAS  PubMed  Google Scholar 

  • Shaw C, Aggleton JP (1993) The effects of fornix and medial prefrontal lesions on delayed non-matching-to-sample by rats. Behav Brain Res 54:91–102.

    Article  CAS  PubMed  Google Scholar 

  • Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ (1998) Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J Neurosci 18:8003–8015.

    CAS  PubMed  Google Scholar 

  • Steriade M (2001a) The intact and sliced brain. The MIT press, Cambridge.

    Google Scholar 

  • Steriade M (2001b) Active neocortical processes during quiescent sleep. Arch Ital Biol 139:37–51.

    CAS  PubMed  Google Scholar 

  • Steriade M, Amzica F (1998) Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online 1:1–10.

    CAS  PubMed  Google Scholar 

  • Steriade M, Nuñez A, Amzica F (1993) Intracellular analysis of relations between the slow (lt; 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3266–3283.

    CAS  PubMed  Google Scholar 

  • Takita M, Izaki Y, Jay TM, Kaneko H, Suzuki SS (1999) Induction of stable long-term depression in vivo in the hippocampal-prefrontal cortex pathway. Eur J Neurosci 11:4145–4148.

    Article  CAS  PubMed  Google Scholar 

  • Virgos C, Martorell L, Valero J, Figuera L, Civeira F, Joven J, Labad A, Vilella E (2001) Association study of schizophrenia with polymorphisms at six candidate genes. Schizophr Res 49:65–71.

    Article  CAS  PubMed  Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–245.

    CAS  PubMed  Google Scholar 

  • Wang J, O’Donnell P (2001) D1 dopamine receptors potentiate NMDA-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cereb Cortex 11:452–462.

    Article  CAS  PubMed  Google Scholar 

  • Wassink TH, Nelson JJ, Crowe RR, Andreasen NC (1999) Heritability of BDNF alleles and their effect on brain morphology in schizophrenia. Am J Med Genet 88:724–728.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR (1995) From neuropathology to neurodevelopment. Lancet 346:552–557.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR, Aloia MS, Goldberg TE, Berman KF (1994) The frontal lobes and schizophrenia. J Neuropsychiatry Clin Neurosci 6:419–427.

    CAS  PubMed  Google Scholar 

  • Wilson CJ (1993) The generation of natural firing patterns in neostriatal neurons. Prog Brain Res 99:277–297.

    CAS  PubMed  Google Scholar 

  • Wilson CJ, Groves PM (1981) Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res 220:67–80.

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16:2397–2410.

    CAS  PubMed  Google Scholar 

  • Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058.

    CAS  PubMed  Google Scholar 

  • Wolkin A, Sanfilipo M, Wolf AP, Angrist B, Brodie JD, Rotrosen J (1992) Negative symptoms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatry 49:959–965.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Goto, Y., Tseng, KY., Lewis, B.L., O’Donnell, P. (2004). Dopamine Modulation of Prefrontal Cortical Neural Ensembles and Synaptic Plasticity. In: Otani, S. (eds) Prefrontal Cortex: From Synaptic Plasticity to Cognition. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7949-4_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7949-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7766-1

  • Online ISBN: 978-1-4020-7949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics