Skip to main content

Working Memory in Prefrontal Cortex and its Neuromodulation

  • Chapter
Prefrontal Cortex: From Synaptic Plasticity to Cognition

Abstract

Working memory is conceptually different from short-term memory and likely relies on different neurobiological substrates. Working memory may be defined as the capacity to use mnemonic information to plan and organize forthcoming action. These processes rely on the prefrontal cortex (PFC), and neurons in this region appear to encode mnemonic information and forthcoming responses based on memory. The task related activity of PFC neurons and overall working memory performance is strongly regulated by dopamine. Dopamine might bias networks of PFC neurons to enter different processing modes, causing PFC networks to either process memory related information in a flexible manner (state 1) or to strongly maintain a single goal state in memory even in the presence of distracters (state 2). Dopamine levels in PFC fluctuate during different cognitive and emotional states, and such fluctuations could switch PFC networks between these two states. Dopamine may therefore dynamically regulate how PFC networks “work with memory” to guide future thought or action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn S, Phillips AG (1999) Dopaminergic correlates of sensory-specific satiety in the medial prefrontal cortex and nucleus accumbens of the rat. J Neurosci 19: RC29.

    CAS  PubMed  Google Scholar 

  • Akaike A, Ohno Y, Sasa M, Takaori S (1987) Excitatory and inhibitory effects of dopamine on neuronal activity of the caudate nucleus neurons in vitro. Brain Res 418: 262–272.

    Article  CAS  PubMed  Google Scholar 

  • Aujla H, Beninger RJ (2001) Hippocampal-prefrontocortical circuits: PKA inhibition in the prefrontal cortex impairs delayed nonmatching in the radial maze in rats. Behav Neurosci 115: 1204–1211.

    Article  CAS  PubMed  Google Scholar 

  • Bachevalier J, Mishkin M (1986) Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav Brain Res 20: 249–261.

    Article  CAS  PubMed  Google Scholar 

  • Baddeley A (1986) Working Memory, Oxford University Press.

    Google Scholar 

  • Baddeley A, Delia Sala S (1996) Working memory and executive control. Phil Trans Royal Soc Lond 351: 1397–1404.

    CAS  Google Scholar 

  • Baddeley AD, Hitch G (1974) Working memory. In: The Psychology of Learning and Motivation. Advances in Research and Theory, (Bower GH, ed), pp 47–89, NY Academic Press.

    Google Scholar 

  • Barnes CA (1995) Involvement of LTP in memory: Are we “searching under the street light”? Neuron 15: 751–754.

    Article  CAS  PubMed  Google Scholar 

  • Batuev AS, Kurina NP, Shutov AP (1990) Unit activity of the medial wall of the frontal cortex during delayed performance in rats. Behav Brain Res 41: 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Brozowski TS, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficits caused by regional depletion of dopamine in prefrontal cortex of Rhesus monkey. Science 205: 929–932.

    Google Scholar 

  • Bruce CJ (1988) Single neuron activity in the monkey’s prefrontal cortex. In: Neurobiology of Neocortex (Rakic P and Singer W, eds), pp 297–329, John Wiley and Sons.

    Google Scholar 

  • Bunney BS, Aghajanian GK (1976) Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: pharmacological differentiation using microiontophoretic techniques. Life Sci 19: 1783–1792.

    Article  CAS  PubMed  Google Scholar 

  • Cépeda C, Radisavljevic Z, Peacock W, Levine MS, Buchwald NA (1992) Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11: 330–341.

    PubMed  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79: 2919–2940.

    CAS  PubMed  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 83: 1550–1566.

    CAS  PubMed  Google Scholar 

  • Condé F, Marie-Lepoivre E, Audinat E, Crépel F (1995) Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352: 567–593.

    PubMed  Google Scholar 

  • Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001) The sensory nature of mnemonic representation in the primate prefrontal cortex. Nature Neurosci 4: 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Cook RG, Brown RF, Riley DA (1985) Flexible memory processing by rats: use of prospective and retrospective information in the radial arm maze. Anim Behav Proc 11: 453–469.

    CAS  Google Scholar 

  • D’Esposito M, Postle BR (1999) The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 37: 1303–1315.

    Google Scholar 

  • Diamond A, Goldman-Rakic PS (1989) Comparison of human infants and rhesus monkeys on Piaget’s AB task: evidence for dependence on dorsolateral prefrontal cortex. Exp Brain Res 74: 24–40.

    Article  CAS  PubMed  Google Scholar 

  • Diamond A, Zola-Morgan S, Squire LR (1989) Successful performance by monkeys with lesions of the hippocampal formation on AB and object retrieval, two tasks that mark developmental changes in human infants. Behav Neurosci 103: 526–537.

    CAS  PubMed  Google Scholar 

  • Durstewitz D, Seamans JK, Sejnowski TJ (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 83: 1733–1750.

    CAS  PubMed  Google Scholar 

  • Durstewitz D, Seamans JK (2002) The computational role of dopamine D1 receptors in working memory. Neural Netw 15: 561–572.

    Article  PubMed  Google Scholar 

  • Feenstra MG (2000) Dopamine and noradrenaline release in the prefrontal cortex in relation to unconditioned and conditioned stress and reward. In: Progress in Brain Research, vol 126 (Uylings HBM, Van Eden CG, De Bruin JPC, Feestra MGP, and Pennartz CMA, eds), pp 133–163.

    Google Scholar 

  • Feenstra MG, Botterblom MH (1996) Rapid sampling of extracellular dopamine in the rat prefrontal cortex during food consumption, handling and exposure to novelty. Brain Res 742: 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Feenstra MG, Botterblom MH, van Uum JF (1995) Novelty-induced increase in dopamine release in the rat prefrontal cortex in vivo: inhibition by diazepam. Neurosci Lett 189: 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Finlay JM, Zigmond MJ (1997) The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochem Res 22: 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  • Fiorino DF, Coury A, Phillips AG (1997) Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats. J Neurosci 17: 4849–4855.

    CAS  PubMed  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2002) Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. J Neurophysiol 88: 929–94.

    PubMed  Google Scholar 

  • Funahashi S, Kubota K (1994) Working memory and prefrontal cortex. Neurosci Res 21: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol 61: 331–349.

    CAS  PubMed  Google Scholar 

  • Funahashi S, Chafee MV, Goldman-Rakic PS (1993) Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365: 753–756.

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36: 61–78.

    CAS  PubMed  Google Scholar 

  • Fuster JM (1984) Behavioral electrophysiology of the prefrontal cortex. Trends Neurosci 7: 408–414.

    Article  Google Scholar 

  • Fuster JM (1990) Inferotempoal units in selective visual attention and short-term memory. J Neurophysiol 64: 681–697.

    CAS  PubMed  Google Scholar 

  • Fuster JM (1991) The prefrontal cortex and its relation to behavior. Prog Brain Res 87: 201–211.

    CAS  PubMed  Google Scholar 

  • Fuster JM (1993) Frontal Lobes. Curr Opn Neurobiol 3: 160–165.

    CAS  Google Scholar 

  • Fuster JM (1995) Memory in the cerebral cortex: an empirical approach to neural networks in the human and nonhuman primate. MIT Press.

    Google Scholar 

  • Fuster JM (2000) Executive frontal functions. Exp Brain Res 133: 66–70.

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173: 652–654.

    CAS  PubMed  Google Scholar 

  • Fuster JM, Bauer RH, Jervey JP (1985) Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res 330: 299–307.

    Article  CAS  PubMed  Google Scholar 

  • Gao WJ, Wang Y, Goldman-Rakic PS (2003) Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex. J Neurosci 23: 1622–1630.

    CAS  PubMed  Google Scholar 

  • Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7: 1050–1063.

    CAS  PubMed  Google Scholar 

  • Godbout R, Mantz J, Pirot S, Glowinski J, Thierry A-M (1991) Inhibitory influence of the mesocortical dopaminergic neurons on their target cells: electrophysiological and pharmacological characterization. J Pharmacol Exp Therap 258: 728–738.

    CAS  Google Scholar 

  • Goldman PS, Rosvold HE (1970) Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp Neurol 27: 291–304.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of the prefrontal cortex and the regulation of behavior by representational knowledge. In: Handbook of Physiology (Plum F and Mountcastle V, eds), pp 373–417, American Physiological Society, Maryland.

    Google Scholar 

  • Goldman-Rakic PS (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Annu Rev Neurosci 11: 137–156.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1990) Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. Prog Brain Res 85: 325–335.

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1991) Prefrontal cortical dysfunction in schizophrenia: the relevance of working memory. In: Psychopathology and the Brain (Carroll BJ and Barrett JE, eds), pp 1–23, Raven Press.

    Google Scholar 

  • Goldman-Rakic PS (1992) Dopamine-mediated mechanisms of the prefrontal cortex. The Neurosciences, 4: 149–159.

    Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14: 477–485.

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1996) The prefrontal landscape: implications of functional architecture for understanding human mentation and the central exectutive. Phil Trans Royal Soc Lond 351: 1445–1453.

    CAS  Google Scholar 

  • Gorelova N, Seamans JK, Yang CR (2002) Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol 88: 3150–3166.

    CAS  PubMed  Google Scholar 

  • Gorelova NA, Yang CR (2000) Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J Neurophysiol 84: 75–87.

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW, Wolters JG, Lohman AHM (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85: 95–118.

    CAS  PubMed  Google Scholar 

  • Gulledge AT, Jaffe DB (1998) Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. J Neurosci 18:9139–9151.

    CAS  PubMed  Google Scholar 

  • Gulledge AT, Jaffe DB (2001) Multiple effects of dopamine on layer v pyramidal cell excitability in rat prefrontal cortex. J Neurophysiol 86: 586–95.

    CAS  PubMed  Google Scholar 

  • Hebb DO (1939) Intelligence in man after large removals of cerebral tissue: report of four left frontal lobe cases. J Gen Psychol 21: 73–87.

    Google Scholar 

  • Hebb D (1977) The frontal lobe. CMA Journal 116: 1373–1374.

    CAS  Google Scholar 

  • Henze DA, Gonzalez-Burgos GR, Urban NN, Lewis DA, Barrionuevo G (2000) Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex J Neurophysiol 84: 2799–2809.

    CAS  PubMed  Google Scholar 

  • Honig WK (1971) Animal Memory. Academic Press.

    Google Scholar 

  • Horger BA, Roth RH (1996) The role of mesoprefrontal dopamine neurons in stress. Crit Rev Neurobiol 10: 395–418.

    CAS  PubMed  Google Scholar 

  • Hu XT, Wang RY (1988) Comparison of effects of D-1 and D-2 dopamine receptor agonists on neurons in the rat caudate putamen: an electrophysiological study. J Neurosci 8: 4340–4348.

    CAS  PubMed  Google Scholar 

  • Inoue M, Oomura Y, Auo S, Nishino H, Sikdar S (1985) Reward related neuronal activity in monkey dorsolateral prefrontal cortex during feeding behavior. Brain Res 326: 307–312.

    Article  CAS  PubMed  Google Scholar 

  • Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of the anterograde transport of Phaseolus vulgaris leucoagglutinin. J Comp Neurol 313: 574–586.

    Article  CAS  PubMed  Google Scholar 

  • Koch KW, Fuster JM (1989) Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp Brain Res 76: 292–306.

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Goldman-Rakic PS (1982) Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res 248: 43–49.

    CAS  PubMed  Google Scholar 

  • Kolb B (1984) Functions of the frontal cortex of the rat: a comparative review. Brain Res Rev 8: 65–98.

    Article  Google Scholar 

  • Konow A, Pribram KH (1970) Error recognition and utilization produced by injury to the frontal cortex in man. Neuropsychologia 8: 489–491.

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34: 337–347.

    CAS  PubMed  Google Scholar 

  • Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU (1999) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 46: 616–626.

    Article  CAS  PubMed  Google Scholar 

  • Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67: 145–163.

    CAS  PubMed  Google Scholar 

  • Manes F, Sahakian B, Clark L, Rogers R, Antoun N, Aitken M, Robbins T (2002) Decision-making processes following damage to the prefrontal cortex. Brain 125: 624–639.

    Article  PubMed  Google Scholar 

  • Mantz J, Milla C, Glowinski J, Thierry AM (1988) Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex. Neuroscience 27: 517–526.

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167–202.

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-term memory. Science 263: 520–522.

    CAS  PubMed  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16: 5154–5167.

    CAS  PubMed  Google Scholar 

  • Milner B (1963) Effects of different brain lesions on card sorting. The role of the frontal lobes. Arch Neurol 9: 90–100.

    Google Scholar 

  • Milner B, Petrides M (1984) Behavioral effects of frontal-lobe lesions in man. Trends Neurosci 7: 403–407.

    Article  Google Scholar 

  • Mitchell BD, Cauller LJ (1997) Cortico-cortical and thalamocortical projections to layer I of the prefrontal/premotor neocortex in rats. Soc Neurosci Abstr 23: 1273.

    Google Scholar 

  • Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21: 7733–7741.

    CAS  PubMed  Google Scholar 

  • Mora F, Sweeney KF, Rolls ET, Sanguinetti AM (1976) Spontaneous firing rate of neurones in the prefrontal cortex of the rat: evidence for a dopamine inhibition. Brain Res 116: 516–522.

    Article  CAS  PubMed  Google Scholar 

  • Murphy BL, Arnsten AFT, Goldman-Rakic PS, Roth RH (1996) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA 93: 1325–1329.

    CAS  PubMed  Google Scholar 

  • Nauta WJH (1971) The problem of the frontal lobe: A reinterpretation. J Psychiat Res 8: 167–187.

    CAS  PubMed  Google Scholar 

  • Niki H, Watanabe M (1979) Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res 171: 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Olton DS, Becker JT, Handleman GE (1979) Hippocampus, space and memory. Behav Brain Sci 2:313–365.

    Google Scholar 

  • Orlov AA, Kurzina NP, Shutov AP (1988) Activity of medial wall neurons in frontal cortex of rat brain during delayed response reactions. Neurosci Behav Physiol 18:31–37.

    Article  CAS  PubMed  Google Scholar 

  • Overton F (1897) Applied Physiology-Intermediate. pp 125–126. American Book Co. New York.

    Google Scholar 

  • Owen AM, Downes JJ, Sahakian BJ, Polkey CE, Robbins TW (1990) Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 28: 1021–1034.

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Sahakian BJ, Semple J, Polkey CE, Robbins TW (1995) Visuospatial short term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdala hippocampectomy in man. Neuropsychologia 33: 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Doyon J, Petrides M, Evans AC (1996) Planning and spatial working memory: a positron emission tomography study in humans. Eur J Neurosci 8: 353–364.

    CAS  PubMed  Google Scholar 

  • Pandya DN, Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in the rhesus monkey: architecture and connections. In: Progress in Brain Research, vol 85 (Uylings H.B.M., van Eden C., de Bruin JPC, Corner MA, and Feenstra MGP, eds), pp 63–94, Elsevier, Amsterdam.

    Google Scholar 

  • Passingham RE (1975) Delayed matching after selective prefrontal lesions in monkeys (Macac mulatta). Brain Res 92: 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Passingham RE (1993) The frontal lobes and voluntary action, Oxford University Press, Oxford.

    Google Scholar 

  • Penit-Soria J, Audinat E, Crepel F (1987) Excitation of rat prefrontal cortical neurons by dopamine: an in vitro electrophysiological study. Brain Res 425: 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Petrides M (1989) Frontal lobes and memory. In: Handbook of Neuropsychology, vol 3 (Boller F and Graffman J, eds), pp 75–90, Elsevier, Amsterdam.

    Google Scholar 

  • Petrides M (1994) Frontal lobes and behaviour. Curr Opn Neurobiol 4: 207–211.

    CAS  Google Scholar 

  • Petrides M (1995) Functional Organization of the human frontal cortex for mnemonic processing: Evidence from neuroimaging studies. Ann NY Acad Sci 769: 85–96.

    CAS  PubMed  Google Scholar 

  • Petrides M (1996) Specialized systems for the processing of mnemonic information within the primate frontal cortex. Phil Trans Royal Soc Lond 351: 1455–1462.

    CAS  Google Scholar 

  • Petrides M (2000a) Impairments in working memory after frontal cortical excisions. Adv Neurol 84: 111–118.

    CAS  PubMed  Google Scholar 

  • Petrides M (2000b) The role of the mid-dorsolateral prefrontal cortex in working memory. Exp Brain Res 133:44–54.

    Article  CAS  PubMed  Google Scholar 

  • Petrides M, Milner B (1982) Deficits on subject-ordered tasks after frontal-and temporal-lobe lesions in man. Neuropsychologia 20: 249–262.

    Article  CAS  PubMed  Google Scholar 

  • Pirot S, Godbout R, Mantz J, Tassin J-P, Glowinski J, Thierry A-M (1992) Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for involvement of both dopaminergic and GABAergic components. Neuroscience 49: 857–865.

    Article  CAS  PubMed  Google Scholar 

  • Pratt WE, Mizumori SJ (2001) Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task. Behav Brain Res 123: 165–183.

    Article  CAS  PubMed  Google Scholar 

  • Quintana J, Fuster JM (1992) Mnemonic and predictive functions of cortical neurons in a memory task. Neuroreport 3: 721–724.

    CAS  PubMed  Google Scholar 

  • Quintana J, Fuster JM, Yajeya J (1989) Effects of cooling parietal cortex on prefrontal units on delayed tasks. Brain Res 503: 100–110.

    Article  CAS  PubMed  Google Scholar 

  • Rainer G, Miller EK (2002) Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Eur J Neurosci 15: 1244–1254.

    Article  PubMed  Google Scholar 

  • Rainer G, Rao SC, Miller EK (1999) Prospective coding for objects in primate prefrontal cortex. J Neurosci 19: 5493–5505.

    CAS  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 22: 146–151.

    Article  CAS  PubMed  Google Scholar 

  • Rétaux S, Besson MJ, Penit-Soria J (1991) Opposing effects of dopamine D2 receptor stimulation on the spontaneous and the electrically-evoked release [3H GABA] on rat prefrontal cortex slices. Neuroscience 42: 61–71.

    PubMed  Google Scholar 

  • Robbins TW (1996) Dissociating executive functions of the prefrontal cortex. Phil Trans Royal Soc Lond 351: 1463–1470.

    CAS  Google Scholar 

  • Romo R, Shultz W (1990) Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. J Neurophysiol 63: 592–606.

    CAS  PubMed  Google Scholar 

  • Rose JE, Woolsey CN (1948) Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat. J Comp Neurol 89: 279–347.

    Article  Google Scholar 

  • Sawaguchi T (1987) Catecholamine sensitivities neuron related to a visual reaction time task in the monkey prefrontal cortex. J Neurophysiol 48: 1100–1122.

    Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71: 515–528.

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M (1985) Laminar distributions of neurons sensitive to acetylcholine, noradrenaline and dopamine in the dorsolateral prefrontal cortex of the monkey. Neurosci Res 2: 255–273.

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1986) Dopamine modulates neuronal activities related to motor performance in the monkey prefrontal cortex. Brain Res 371, 404–408.

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1988) Dopamine enhances the neuronal activity of spatial short-term memory performance in the primate prefrontal cortex. Neurosci Res 5: 465–473.

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1990a) Catecholamine effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63: 1385–1400.

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1990b) Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63: 1401–1412.

    CAS  PubMed  Google Scholar 

  • Schultz W (1992a) Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1–27.

    Google Scholar 

  • Schultz W (1992b) Activity of dopamine neurons in the behaving primate. The Neurosciences 4: 129–138.

    Google Scholar 

  • Schultz W, Romo R (1990) Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. J Neurophysiol 63: 607–624.

    CAS  PubMed  Google Scholar 

  • Schultz W, Tremblay L, Holleman JR (1998) Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacol 37, 421–429.

    Article  CAS  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1995) Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex. Behav Neurosci 109: 1063–1073.

    Article  CAS  PubMed  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18:1613–1621.

    CAS  PubMed  Google Scholar 

  • Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ (2001a) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci USA 98: 301–306.

    Article  CAS  PubMed  Google Scholar 

  • Seamans JK, Gorelova N, Durstewitz D, Yang CR (2001b) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21: 3628–3638.

    CAS  PubMed  Google Scholar 

  • Sesack SR, Bunney BS (1989) Pharmacological characterization of the receptor mediating electrophysiological responses to dopamine in rat medial prefrontal cortex: a microiontophoretic study. J Pharmacol Exp Therap 248: 1323–1333.

    CAS  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213–242.

    Article  CAS  PubMed  Google Scholar 

  • Shallice T (1982) Specific impairments in planning. Phil Trans Royal Soc Lond 298: 199–209.

    CAS  Google Scholar 

  • Shallice T, Burgess P (1996) The domain of supervisory processes and temporal organization of behaviour. Phil Trans Royal Soc Lond 351: 1405–1411.

    CAS  Google Scholar 

  • Stuss DT, Benson DF (1986) The Frontal Lobes, Raven Press, New York.

    Google Scholar 

  • Taber MT, Fibiger HC (1997) Activation of the mesocortical dopamine system by feeding: lack of a selective response to stress. Neuroscience 77: 295–298.

    Article  CAS  PubMed  Google Scholar 

  • Uylings HBM, van Eden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. In: Progress in Brain Research, vol 85 (Uylings H.B.M., van Eden C., de Bruin JPC, Corner MA, and Feenstra MGP, eds), pp 31–62, Elsevier, Amsterdam.

    Google Scholar 

  • Verin M, Partiot A, Pillon B, Malapani C, Agid Y, Dubois B (1993) Delayed response tasks and prefrontal lesions in man—evidence for self generated patterns of behaviour with poor environmental modulation. Neuropsychologia 31: 1379–1396.

    Article  CAS  PubMed  Google Scholar 

  • Vincent SL, Knan Y, Benes FM (1993) Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. J Neurosci 13: 2551–2564.

    CAS  PubMed  Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode abstract rules. Nature 411: 953–956.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M (1981) Prefrontal unit activity during delayed conditional discriminations in the monkey. Brain Res 225: 51–65.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M (1986a) Prefrontal unit activity during delayed conditional go/no-go discrimination in the monkey. I. Relation to the stimulus. Brain Res 382: 1–14.

    CAS  PubMed  Google Scholar 

  • Watanabe M (1986b) Prefrontal unit activity during delayed conditional go/no-go discrimination in the monkey. II. Relation to go and no-go responses. Brain Res 382: 15–27.

    CAS  PubMed  Google Scholar 

  • Watanabe M (1990) Prefrontal unit activity during associative learning in the monkey. Exp Brain Res 80: 296–309.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Nature 382: 629–632.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M (1998) Cognitive and motivational operations in primate prefrontal neurons. Rev Neurosci 9: 225–241.

    CAS  PubMed  Google Scholar 

  • Watanabe T, Niki H (1985) Hippocampal unit activity and delayed response in the monkey. Brain Res 325: 241–254.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Hikosaka K, Sakagami M, Shirakawa S (2002) Coding and monitoring of motivational context in the primate prefrontal cortex. J Neurosci 22: 2391–2400.

    CAS  PubMed  Google Scholar 

  • White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126: 315–335.

    Article  CAS  PubMed  Google Scholar 

  • Williams GV, Millar J (1990) Differential Actions of Endogenous and Iontophoretic Dopamine in Rat Striatum. Eur J Neurosci 2: 658–661.

    PubMed  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376: 572–575.

    CAS  PubMed  Google Scholar 

  • Wise SP, Murray EA, Gerfen CR (1996) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 10: 317–356.

    CAS  PubMed  Google Scholar 

  • Yajeya J, Quintana J, Fuster J (1988) Prefrontal representation of stimulus attributes during delay tasks II. The role of behavioral significance. Brain Res 474: 222–230.

    Article  CAS  PubMed  Google Scholar 

  • Yang CR, Mogenson GJ (1990) Dopaminergic modulation of cholinergic responses in rat medial prefrontal cortex: an electrophysiological study. Brain Res 524: 271–281.

    Article  CAS  PubMed  Google Scholar 

  • Yang CR, Seamans JK (1996) Dopamine D1 receptor actions in layer v–vi rat prefrontal cortex neurons in vitro: Modulation of dendritic-somatic signal integration. J Neurosci 16: 1922–1935.

    CAS  PubMed  Google Scholar 

  • Zahrt J, Taylor JR, Mathew RG, Arnsten AFT (1997) Supranormal stimulation of D 1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17:8528–8535.

    CAS  PubMed  Google Scholar 

  • Zheng P, Zhang XX, Bunney BS, Shi WX (1999) Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neuroscience 91: 527–535.

    Article  CAS  PubMed  Google Scholar 

  • Zhou FM, Hablitz JJ (1999) Dopamine modulation of membrane and synaptic properties of interneurons in rat cerebral cortex. J Neurophysiol 81: 967–976.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Seamans, J.K. (2004). Working Memory in Prefrontal Cortex and its Neuromodulation. In: Otani, S. (eds) Prefrontal Cortex: From Synaptic Plasticity to Cognition. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7949-4_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7949-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7766-1

  • Online ISBN: 978-1-4020-7949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics