Skip to main content

Functional Neuroimaging and the Prefrontal Cortex: Organization by Stimulus Domain?

  • Chapter
Prefrontal Cortex: From Synaptic Plasticity to Cognition

Abstract

Working memory is the set of cognitive operations that maintains and processes information “on-line”. It has been characterized both as a mental workspace (Baddeley, 1986) and as a set of operations that allow the efficient allocation of cognitive resources (Carpenter et al., 1990, 1999). Working memory typically is thought to be of limited capacity, between 4–7 items (Miller, 1956; Cowan, 2000), of limited duration, on the order of seconds (Peterson and Peterson, 1959) and as involving a number of separable sub-mechanisms, among these, rehearsal processes, domain-specific storage buffers, and a set of executive processes that are thought to operate on currently active information (Baddeley, 1986; Smith et al., 1996). This chapter focuses on the cognitive operations mediated by the frontal lobes in the service of working memory tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anokhin AP, Birbaumer N, Lutzenberger W, Nikolaev A, Vogel F (1996) Age increases brain complexity. Electrocencephalogr Clin Neurophysiol 99:63–68.

    CAS  Google Scholar 

  • Awh E, Jonides J (2001) Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci 5:119–126.

    Article  PubMed  Google Scholar 

  • Awh E, Jonides J, Smith EE, Schumacher EH, Koeppe RA, Katz S (1996) Dissociation of storage and rehearsal in verbal working memory: evidence from positron emission tomography. Psychol Sci 7:25–31.

    Google Scholar 

  • Awh E, Jonides J, Smith EE, Buxton RB, Frank LR, Love T, Wong EC, Gmeindl L (1999) Rehearsal in spatial working memory: evidence from neuroimaging. Psychol Sci 10:433–437.

    Article  Google Scholar 

  • Baddeley AD (1986) Working Memory. OUP, Oxford.

    Google Scholar 

  • Baddeley AD, Hitch G (1974) Working memory. In: Recent Advances in Learning and Motivation, Vol 8 (Bower GA, ed), pp47–89. New York: Academic Press.

    Google Scholar 

  • Baddeley AD, Grant S, Wight E, Thomson N (1975) Imagery and visual working memory. In: Attention and Performance V (Rabbitt PMA and Dornic S, eds), pp205–217, Academic Press, London.

    Google Scholar 

  • Baddeley AD, Lewis VJ, Villar G (1984) Exploring the articulatory loop. Q J Exp Psychol 36:233–252.

    Google Scholar 

  • Belger A, Puce A, Krystal JH, Gore JC, Goldman-Rakic P, McCarthy G (1998) Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Hum Brain Mapp 6:14–32.

    Article  CAS  PubMed  Google Scholar 

  • Benson DF (1986) Aphasia and lateralization of language. Cortex 22:71–86.

    CAS  PubMed  Google Scholar 

  • Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC (1997) A parametric study of prefronal cortex involvement in human working memory. Neuroimage 5: 49–62.

    Article  CAS  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Localisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig.

    Google Scholar 

  • Carpenter PA, Just MA, Shell P (1990) What one intelligence test measures: a theoretical account of the processing in the Ravens Progressive Mattrices Test. Psychol Rev 97:404–431.

    CAS  PubMed  Google Scholar 

  • Carpenter PA, Just MA, Keller TA, Eddy W Thulborn K (1999) Graded functional activation in the visuospatial system with the amount of task demand. J Cogn Neurosci 11:9–24.

    Article  CAS  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus-monkey: II. evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445.

    CAS  PubMed  Google Scholar 

  • Chao LL, Haxby JV, Martin A (1999) Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci 2:913–919.

    CAS  PubMed  Google Scholar 

  • Cohen JD, Servan-Schreiber D (1992) Cortex, context and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev 99:45–77.

    CAS  PubMed  Google Scholar 

  • Courtney SM, Ungerleider LG, Keil K, Haxby JV (1996) Object and spatial visual working memory activate separate neural systems in human cortex. Cereb Cortex 6:39–49.

    CAS  PubMed  Google Scholar 

  • Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV (1998) An area specialized for spatial working memory in human frontal cortex. Science 279:1347–1351.

    Article  CAS  PubMed  Google Scholar 

  • Cowan N (2000) The magical number 4 in short-term memory: A reconsideration of mental storage capacity Behav Brain Sci 24:87–185.

    Google Scholar 

  • D’Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease SJ (1998) Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res 7:1–13.

    Google Scholar 

  • D’Esposito M, Postle BR, Ballard D, Lease J (1999) Maintenance versus manipulation of information held in working memory: an fMRI study. Brain Cogn 41:66–86.

    Google Scholar 

  • Falzi G, Perronne P, Vignolo LA (1982) Right-left asymmetry in anterior speech region. Arch Neurol 39:239–240.

    CAS  PubMed  Google Scholar 

  • Fletcher PC, Henson RNA (2001) Frontal lobes and human memory: insights from functional neuroimaging. Brain 124:849–881.

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM (1997) The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe. Lippincott-Raven Publishers, New York.

    Google Scholar 

  • Gazzaniga MS (1970) The Bisected Brain. Appleton-Century-Crofts, New York.

    Google Scholar 

  • Gazzaniga MS (1983) Right hemisphere language following brain bisection: a 20-year perspective. Am Psychol 38:547–549.

    CAS  PubMed  Google Scholar 

  • Gazzaniga MS, LeDoux JE (1978) The Integrated Mind. New York: Plenum Press.

    Google Scholar 

  • Gazzaniga MS, Smylie CS (1983) Facial recognition and brain asymmetries: clues to underlying mechanisms Ann Neurol 13:536–540.

    Article  CAS  PubMed  Google Scholar 

  • Gazzaniga MS, Sperry RW (1967) Language after section of the cerebral commissures. Brain 90:131–148.

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representation memory. In: Handbook of Physiology, vol 5, The Nervous System (Plum F and Mountcastle VB, eds), pp373–417, American Physiological Society, Bethesda MD.

    Google Scholar 

  • Hautzel H, Mottaghy FM, Schmidt D, Zemb M, Shah NJ, Muller-Gartner HW, Krause BJ (2002) Topographical segregation and convergence of verbal, object, shape, and spatial working memory in humans. Neurosci Lett 323:156–160.

    CAS  PubMed  Google Scholar 

  • Johnson MK (1992) MEM: mechanisms of recollection. J Cogn Neurosci 4:268–280.

    Google Scholar 

  • Johnson MK, Raye CL, Mitchell KJ, Greene EJ, Anderson AW (2003) fMRI evidence for organization of prefrontal cortex by both type of process and type of information. Cereb Cortex 13:265–273.

    Article  PubMed  Google Scholar 

  • Jonides J (1995) Working memory and thinking. In: An Invitation to Cognitive Science: Thinking, vol 3 (Smith EE and Osherson DN, eds). pp215–233, MIT Press, Cambridge MA.

    Google Scholar 

  • Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625.

    Article  CAS  PubMed  Google Scholar 

  • Jonides J, Schumacher EH, Smith EE, Lauber E, Awh E, Minoshima S, Koppe RA (1997) Verbal working memory load affects regional brain activation as measured by PET. J Cogn Neurosci 9:462–475.

    Google Scholar 

  • Jonides J, Smith EE, Marshuetz C, Koeppe RA, Reuter-Lorenz PA (1998) Inhibition of verbal working memory revealed by brain activation. Proc Natl Acad Sci USA 95:8410–8413.

    Article  CAS  PubMed  Google Scholar 

  • Kimura D (1973) Asymmetry of human brain. Sci Am 228:70–78

    CAS  PubMed  Google Scholar 

  • Levy R, Goldman-Rakic PS (2000) Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp Brain Res 133:23–32.

    Article  CAS  PubMed  Google Scholar 

  • Marshuetz C, Smith EE, Jonides J, DeGutis J, Chenevert TL (2000) Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. J Cogn Neurosci 12(S2): 130–144.

    PubMed  Google Scholar 

  • McCarthy G, Puce A, Constable RT, Krystal JH, Gore JC, Goldman-Rakic P (1996) Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cereb Cortex 6:600–611.

    CAS  PubMed  Google Scholar 

  • Meyer DA, Kieras DE (1999) Precis to a practical unified theory of cognition and action: some lessons from EPIC computational models of human multiple-task performance. In: Attention and Performance XVII. Cognitive Regulation of Performance: Interaction of Theory and Application (Gopher D and Koriat A, eds), pp 17–88, MIT Press, Cambridge MA.

    Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417.

    Article  Google Scholar 

  • Miller GA (1956) The magic number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97.

    CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202.

    Article  CAS  PubMed  Google Scholar 

  • Milner B, Petrides M, Smith ML (1985) Frontal lobes and the temporal organization of memory. Hum Neurobiol 4:137–142.

    CAS  PubMed  Google Scholar 

  • Newell A (1992) Unified theories of cognition and the role of SOAR. In: SOAR: A Cognitive Architecture in Perspective (Michon JA and Akyurek A, eds), pp25–79, Kluwer, Amsterdam.

    Google Scholar 

  • Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD (2000) Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage 11:424–446.

    Article  CAS  PubMed  Google Scholar 

  • Owen AM (1997) The functional organization of working memory processes within the human lateral frontal cortex: the contribution of functional neuroimaging. Eur J Neurosci 9:1329–1339.

    CAS  PubMed  Google Scholar 

  • Owen AM, Evans AC, Petrides M (1996) Evidence for the two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb Cortex 6:31–38.

    CAS  PubMed  Google Scholar 

  • Owen AM, Stern CE, Look RB, Tracey I, Rosen BR, Petrides M (1998) Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proc Natl Acad Sci USA 95:7721–7726.

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Herrod NJ, Menon DK, Clark JC, Downey SPMJ, Carpenter A, Minhas PS, Turkheimer FE, Williams EJ, Robbins TW, Sahakian BJ, Petrides M, Pickard DJ (1999) Redefining the functional organization of working memory processes within human lateral prefrontal cortex. Eur J Neurosci 11:567–574.

    Article  CAS  PubMed  Google Scholar 

  • Paulesu E, Frith CD, Frackowiak SJ (1993) The neural correlates of the verbal component of working memory. Nature 362:342–344.

    Article  CAS  PubMed  Google Scholar 

  • Peterson LR, Peterson M (1959) Short-term retention of individual items. J Exp Psychol 58:193–198.

    CAS  PubMed  Google Scholar 

  • Petrides M (1994) Frontal lobes and working memory: evidence from investigations of the effects of cortical excisions in nonhuman primates. In: Handbook of Neuropsychology, vol 9 (Boller F and Grafman J, eds), pp59–82, Elsevier, Amsterdam.

    Google Scholar 

  • Petrides M, Alivisatos B, Evans AC, Meyer E (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90:878–882.

    CAS  PubMed  Google Scholar 

  • Pollmann S, von Cramon DY (2000) Object working memory and visuospatial processing: functional neuroanatomy analyzed by event-related fMRI. Exp Brain Res 133:12–22.

    Article  CAS  PubMed  Google Scholar 

  • Postle BR, D’Esposito M (2000) Evaluating models of the topographical organization of working memory function in frontal cortex with event-related fMRI. Psychobiology 28:132–145.

    Google Scholar 

  • Postle BR, Berger JS, D’Esposito M (1999) Functional neuroanatomical double dissociaton of mnemonic and executive control processes contributing to working memory performance. Proc Natl Acad Sci USA 96:12959–12964.

    Article  CAS  PubMed  Google Scholar 

  • Postle BR, Stern CE, Rosen BR, Corkin S (2000) An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory. Neuroimage 11:409–432.

    Article  CAS  PubMed  Google Scholar 

  • Prabhakaran V, Narayanan K, Zhao Z, Gabrieli JDE (2000) Integration of diverse information in working memory within the frontal lobe. Nature 3:85–90.

    CAS  Google Scholar 

  • Raz N (2000) Aging of the brain and its impact on cognitive performance: integration of structural and functional findings. In: Handbook of Aging, 2nd Ed (Craik FIM, Salthouse TA, eds), pp1–90. New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Reuter-Lorenz PA, Baynes K (1992) Modes of lexical access in the callosotomized brain. J Cogn Neurosci 4:155–164.

    Google Scholar 

  • Reuter-Lorenz PA, Miller AC (1998) The cognitive neuroscience of human laterality: lessons from the bisected brain. Curr Dir Psychol Sci 7:15–20.

    Article  Google Scholar 

  • Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, Marshuetz C, Koeppe RA (2000) Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci 12:174–187.

    Article  CAS  PubMed  Google Scholar 

  • Rypma B, Prabhakaran V, Desmond JE, Glover GH, Gabrieli JD (1999) Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage 9:216–226.

    Article  CAS  PubMed  Google Scholar 

  • Sala JB, Rama P, Courtney SM (2003) Functional topography of a distributed neural system for spatial and nonspatial information maintenance in working memory. Neuropsychologia 41:341–356.

    Article  PubMed  Google Scholar 

  • Schumacher EH, Lauber E, Awh E, Jonides J, Smith EE, Koeppe RA (1996) PET evidence for an amodal verbal working-memory system. Neuroimage 3:79–88.

    Article  CAS  PubMed  Google Scholar 

  • Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661.

    CAS  PubMed  Google Scholar 

  • Smith EE, Jonides J, Koeppe RA, Awh E, Schumacher EH, Minoshima S (1995) Spatial versus object working memory: PET investigations. J Cogn Neurosci 7:337–356.

    Google Scholar 

  • Smith EE, Jonides J, Koeppe RA (1996) Dissociating verbal and spatial working memory using PET. Cereb Cortex 6:11–20.

    CAS  PubMed  Google Scholar 

  • Smith EE, Jonides J, Marshuetz C, Koeppe RA (1998) Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci USA 95:876–882.

    CAS  PubMed  Google Scholar 

  • Smith EE, Marshuetz C, Geva A (2002) Working memory: findings from neuroimaging and patient studies. In: Handbook of Neuropsychology, Vol. 7: The Frontal Lobes (Boiler F, Grafman, J, eds), pp55–72. Amsterdam: Elsevier.

    Google Scholar 

  • Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662.

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar Stereotaxic Atlas of the Human Brain. Thieme, New York.

    Google Scholar 

  • Thatcher RW, Walker RA, Giudice S (1987) Human cerebral hemispheres develop at different rates and ages. Science 236:1110–1113.

    CAS  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Analysis of Visual Behavior (Ingle DJ, Goodale MA and Mansfield RJW, eds), pp548–586, MIT Press, Cambridge MA.

    Google Scholar 

  • Ungerleider LG, Courtney SM, Haxby JV (1998) A neural system for human visual working memory. Proc Natl Acad Sci USA 95:883–890.

    Article  CAS  PubMed  Google Scholar 

  • Warrington E, McCarthy R (1983) Category specific access dysphasia. Brain 106:859–878.

    PubMed  Google Scholar 

  • Warrington E, Shallice T (1984) Category specific semantic impairments. Brain 107:829–854.

    PubMed  Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 5:470–483.

    Google Scholar 

  • Wilson FA, O’Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958.

    CAS  PubMed  Google Scholar 

  • Yakovlev PV, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Regional Development of the Brain in Early Life (Minkowski A, ed), pp3–70, Davis, Philadelphia.

    Google Scholar 

  • Zaidel E (1985) Language in the right hemisphere. In: The Dual Brain: Hemispheric Specialization in Humans (Benson DF and Zaidel E, eds), pp205–231, Guilford Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Marshuetz, C., Bates, J.E. (2004). Functional Neuroimaging and the Prefrontal Cortex: Organization by Stimulus Domain?. In: Otani, S. (eds) Prefrontal Cortex: From Synaptic Plasticity to Cognition. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7949-4_13

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7949-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7766-1

  • Online ISBN: 978-1-4020-7949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics