Skip to main content

The Role of Dopamine in Cognition: Insights from Neuropsychological Studies in Humans and Non-Human Primates

  • Chapter
Prefrontal Cortex: From Synaptic Plasticity to Cognition

Abstract

The behavioral evidence for dopaminergic modulation of prefrontal cognitive functioning is reviewed. The experimental studies in rats, monkeys, and humans that highlight the inverted U-shaped relationship between dopamine and cognition are described and discussed in relation to theories of motivation and arousal. It is suggested that the disruptive effects of L-DOPA on reversal learning and decision making and the facilitatory effects of L-DOPA on task-switching and spatial working memory in patients with Parkinson’s disease support a role for dopamine in modulating both ventral and dorsolateral-striatal circuits. The fact that certain prefrontal tasks may be more sensitive to dopaminergic modulation than others is considered in the light of findings from 6-OHDA lesion studies in monkeys. A specific role for dopamine in protecting prefrontal processing from interference is shown by the marked disruption of marmosets with 6-OHDA lesions of the prefrontal cortex (PFC) in performing a visual discrimination in the presence of distracting stimuli. The finding that 6-OHDA lesions of the caudate nucleus protect the performance of marmosets from such distracting stimuli is discussed in relation to the possible competition and co-ordination of the PFC and caudate nucleus and emphasizes the need for any theory of dopamine function in the PFC to take into account the role of dopamine at the level of the striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander G, DeLong M, Stuck P (1986) Parallel organisation of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9:357–381.

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Murphy FC, Merchant K (2000) The selective dopamine D4 receptor antagonist, PNU-101387G, prevents stress-induced cognitive deficits in monkeys. Neuropsychopharmacology 23:405–410.

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF, Cai JX, Murphy FC, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151.

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AFT (1998) Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci 2:436–446.

    Article  Google Scholar 

  • Braver TS, Cohen JD (2000) On the Control of Control: The Role of Dopamine in Regulating Prefrontal Function and Working Memory. In: Control of Cognitive Processes. Attention and Performance XVIII. (Monsell S and Driver J, eds), pp 713–737. The MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Brozoski TJ, Brown R, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in the prefrontal cortex of rhesus monkeys. Science 205:929–931.

    CAS  PubMed  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BL (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501.

    Article  CAS  PubMed  Google Scholar 

  • Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617–628.

    CAS  PubMed  Google Scholar 

  • Clark CR, Geffen GM, Geffen LB (1989) Catecholamines and the covert orientation of attention in humans. Neuropsychologia 27:131–139.

    Article  CAS  PubMed  Google Scholar 

  • Collins P, Roberts AC, Dias R, Everitt BJ, Robbins TW (1998) Perseveration and strategy in a novel spatial self-ordered sequencing task for nonhuman primates: effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. J Cogn Neurosci 10:332–354.

    Article  CAS  PubMed  Google Scholar 

  • Collins P, Wilkinson LS, Everitt BJ, Robbins TW, Roberts AC (2000) The effect of dopamine depletion from the caudate nucleus of the common marmoset (callithrix jacchus) on tests of prefrontal cognitive function. Behav Neurosci 114:3–17.

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001a) Mechanisms of cognitive set flexibility in Parkinson’s disease. Brain 124:2503–2512.

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001b) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11:1136–1143.

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Clark L, Owen AM, Robbins TW (2002a) Defining the neural mechanisms of probabilistic reversal learning using event-related functional Magnetic Resonance Imaging. J Neurosci 22:4563–4567.

    CAS  PubMed  Google Scholar 

  • Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002b) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125:584–594.

    Article  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) L-DOPA medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia (in press).

    Google Scholar 

  • Crofts HS, Dalley JW, Van Denderen JCM, Everitt BJ, Robbins TW, Roberts AC (2001) Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cereb Cortex 11:1015–1026.

    Article  CAS  PubMed  Google Scholar 

  • Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA (2000) Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol 84:3072–3077.

    CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72.

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1997) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886.

    Google Scholar 

  • Dimitrov M, Grafman J, Soares AHR, Clark K (1999) Concept formation and concept shifting in frontal lesion and Parkinson’s disease patients assessed with the California card sorting test. Neuropsychology 13:135–143.

    Article  CAS  PubMed  Google Scholar 

  • Divac I, Rosvold HE, Szwarcbart MK (1967) Behavioral effects of selective ablation of the caudate nucleus. J Comp Physiol Psychol 63:184–190.

    CAS  PubMed  Google Scholar 

  • Downes JJ, Roberts AC, Sahakian BJ, Evenden JL, Morris RG, Robbins TW (1989) Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: evidence for a specific attentional dysfunction. Neuropsychologia 27:1329–1343.

    Article  CAS  PubMed  Google Scholar 

  • Dreher J-C, Guigon E, Burnod Y (2002) A model of prefrontal cortex dopaminergic modulation during the delayed alternation task. J Cogn Neurosci 14:853–865.

    Article  PubMed  Google Scholar 

  • Durstewitz D, Seamans J, Sejnowski T (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 83:1733–1750.

    CAS  PubMed  Google Scholar 

  • Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98:6917–6922.

    Article  CAS  PubMed  Google Scholar 

  • Ernst M, Bolla K, Mouratidis M, Contoreggi C, Matochik JA, Kurian V, Cadet J-L, Kimes AS, London ED (2002) Decision-making in a risk-taking task: A PET study. Neuropsychopharmacology 26:682–691.

    Article  PubMed  Google Scholar 

  • Eysenck MW (1982) Attention and Arousal. Cognition and Performance. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Filoteo JV, Maddox WT (1999) Quantitative modeling of visual attention processes in patients with Parkinson’s disease: effects of stimulus integrality on selective attention and dimensional integration. Neuropsychology 13:106–222.

    Article  Google Scholar 

  • Filoteo JV, Delis DC, Demadura TL, Salmon DP, Roman MJ, Shults CW (1994) Abnormally rapid disengagement of covert attention to global and local stimulus levels may underlie the visuoperceptual impairment in Parkinson’s patients. Neuropsychology 8:210–217.

    Article  Google Scholar 

  • Filoteo JV, Delis DC, Salmon DP, Demadura T, Roman MJ, Shults CW (1997) An examination of the nature of attentional deicits in patients with Parkinson’s disease: Evidence from a spatial orienting task. J Int Neuropsychol Soc 3:337–347.

    CAS  PubMed  Google Scholar 

  • Flowers KA, Robertson C (1985) The effect of Parkinson’s disease on the ability to maintain a mental set. J Neurol Neurosurg Psychiatr 48:517–529.

    CAS  PubMed  Google Scholar 

  • Gauntlett-Gilbert J, Roberts RC, Brown VJ (1999) Mechanisms underlying attentional set-shifting in Parkinson’s disease. Neuropsychologia 37:605–616.

    Article  CAS  PubMed  Google Scholar 

  • Gotham AM, Brown RG, Marsden CD (1988) ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain 111:299–321.

    PubMed  Google Scholar 

  • Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins T (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20:1208–1215.

    CAS  PubMed  Google Scholar 

  • Grant DA, Berg EA (1948) A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card sorting problem. J Exp Psychol 38:404–411.

    Google Scholar 

  • Hayes AE, Davidson MC, Keele SW (1998) Towards a functional analysis of the basal ganglia. J Cogn Neurosci 10:178–198.

    Article  CAS  PubMed  Google Scholar 

  • Hebb D (1955) Drives and CNS (conceptual nervous system). Psychol Rev 62:243–254.

    CAS  PubMed  Google Scholar 

  • Henik A, Singh J, Beckley DJ, Rafal RD (1993) Disinhibition of automatic word reading in Parkinson’s disease. Neurology 17:427–424.

    Google Scholar 

  • Hornykiewicz O (1974) The mechanisms of action of L-DOPA in Parkinson’s disease. Life Sci 15:1249–1259.

    Article  CAS  PubMed  Google Scholar 

  • Jones B, Mishkin M (1972) Limbic lesions and the problem of stimulus-reinforcement associations. Exp Neurol 36:362–377.

    Article  CAS  PubMed  Google Scholar 

  • Kimberg DY, D’Esposito M, Farah MJ (1997) Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport 8:3581–3585.

    CAS  PubMed  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven patterns of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. New Eng J Med 318:876–880.

    CAS  PubMed  Google Scholar 

  • Knutson B, Adams CM, Fong G, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:1–5.

    Google Scholar 

  • Kulisevsky J (2000) Role of dopamine in learning and memory: implications for the treatment of cognitive dysfunction in patients with Parkinson’s disease. Drugs Aging 16:365–379.

    CAS  PubMed  Google Scholar 

  • Kulisevsky J, Avila A, Barbano M, Antonijoan R, Berthier ML, Gironell A (1996) Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson’s disease patients at different levodopa plasma levels. Brain 119:2121–2132.

    PubMed  Google Scholar 

  • Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992) L-DOPA withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 107:394–404.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence AD, Sahakian BJ, Rogers RD, Hodges JR, Robbins TW (1999) Discrimination, reversal, and shift learning in Huntington’s disease: mechanisms of impaired response selection. Neuropsychologia 37:1359–1374.

    Article  CAS  PubMed  Google Scholar 

  • Lees AJ, Smith E (1983) Cognitive deficits in the early stages of Parkinson’s disease. Brain 106:257–270.

    PubMed  Google Scholar 

  • Maddox WT, Filoteo JV, Delis DC, Salmon DP (1996) Visual selective attention deficits in patients with Parkinson’s disease: A quantative model-based approach. Neuropsychology 10:197–218.

    Article  Google Scholar 

  • Malhotra AK, Kestler LJ, Mazzanti CM, Bates JA, Goldberg TE, Goldman D (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159:652–654.

    Article  PubMed  Google Scholar 

  • Manes F, Sahakian BJ, Clark L, Rogers RD, Antoun N, Aitkin M, Robbins TW (2002) Decision-making processes following damage to the prefrontal cortex. Brain 125:624–639.

    Article  PubMed  Google Scholar 

  • Maruyama W, Naoi M, Narabayashi H (1996) The metabolism of L-DOPA and L-threo-3,4-dihydroxyphenylserine and their effects on monoamines in the human brain: analysis of the intraventricular fluid from parkinsonian patients. J Neurol Sci 139:141–148.

    Article  CAS  PubMed  Google Scholar 

  • Mattay VS, Callicot JH, Bertolino A, Heaton I, Frank JA, Coppola R, Berman KF, Goldberg TE, Weinberger DR (2000) Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage 12:268–275.

    Article  CAS  PubMed  Google Scholar 

  • Mattay VS, Tessitore A, Callicott JH, Bertonlino A, Goldberg TE, Chase TN, Hyde TM, Weinberger DR (2002a) Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 58:630–635.

    CAS  Google Scholar 

  • Mattay VS, Fera F, Hariri A, Tessitore A, Lee S, Goldberg TE, Kolachana BS, Callicott JH, Egan MF, Weinberger DR (2002b) Effect of the COMT VAL158MET polymorphism on the neuromodulatory effects of amphetamine. In: Society for Neuroscience 32nd Annual Meeting. Orlando, Florida, US.

    Google Scholar 

  • Mehta M, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20: RC65.

    CAS  PubMed  Google Scholar 

  • Mehta MA, Sahakian BJ, McKenna PJ, Robbins TW (1999) Systematic sulpiride in young adult volunteers simulates the profile of cognitive deficits in Parkinson’s disease. Psychopharmacology 146:162–174.

    Article  CAS  PubMed  Google Scholar 

  • Mehta MA, Swainson R, Ogilvie AD, Sahakian BJ, Robbins TW (2001) Improved short-term spatial memory but impaired reversal learning following the dopamine D2 agonist bromocriptine in human volunteers. Psychopharmacology 159:10–20.

    Article  CAS  PubMed  Google Scholar 

  • Meyer DE, Evans JE, Lauber EJ, Gmeindl L, Rubinstein J, Junck L, Koeppe RA (1998) The role of dorsolateral prefrontal cortex for executive cognitive processes in task switching. In: Annual Meeting of the Cognitive Neuroscience Society. San Francisco, CA.

    Google Scholar 

  • Mogenson G (1987) Limbic-motor integration. Prog Psychobiol Physiol Psychol 12:117–169.

    Google Scholar 

  • Murphy BL, Arnsten AFT, Jentsch JD, Roth RH (1996) Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress-induced impairment. J Neurosci 16:7768–7775.

    CAS  PubMed  Google Scholar 

  • Owen AM, James M, Leigh JM, Summers BA, Marsden CD, Quinn NP, Lange KW, Robbins TW (1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115:1727–1751.

    PubMed  Google Scholar 

  • Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993) Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain 116:1159–1179.

    PubMed  Google Scholar 

  • Owen AM, Sahakian BJ, Hodges JR, Summers BA, Polkey CE, Robbins TW (1995) Dopamine-dependent frontostriatal planning deficits in early Parkinson’s disease. Neuropsychology 9:126–140.

    Article  Google Scholar 

  • Owen AM, Evans AC, Petrides M (1996) Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb Cortex 6:31–38.

    CAS  PubMed  Google Scholar 

  • Partiot A, Verin M, Pillon B, Teixeira-Ferreira C, Agid Y, Dubois B (1996) Delayed response tasks in basal ganglia lesions in man: further evidence for a striato-frontal cooperation in behavioral adaptation. Neuropsychologia 34:709–721.

    Article  CAS  PubMed  Google Scholar 

  • Pycock CJ, Kerwin RW, Carter CJ (1980) Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286:74–77.

    Article  CAS  PubMed  Google Scholar 

  • Ravizza S, Ciranni M (2002) Contributions of the prefrontal cortex and basal ganglia to set shifting. J Cogn Neurosci 14:472–483.

    Article  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (1987) Psychopharmacological studies of arousal and attention. In: Cognitive Neurochemistry (Stahl SM, Iversen SD, and Goodman EC, eds). Oxford University Press, Oxford.

    Google Scholar 

  • Robbins TW, Cador M, Taylor JR, Everitt BJ (1989) Limbic-striatal interactions in reward-related processes. Neurosci Biobehav Rev 13:155–162.

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC, Robbins TW, Everitt BJ (1988) The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and non-human primates. Q J Exp Psychol 40b:321–341.

    Google Scholar 

  • Roberts AC, De Salvia MA, Wilkinson LS, Collins P, Muir JL, Everitt BJ, Robbins TW (1994) 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci 14:2531–2544.

    CAS  PubMed  Google Scholar 

  • Rogers RD, Sahakian BJ, Hodges JR, Polkey CE, Kennard C, Robbins TW (1998) Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain 121:815–842.

    Article  PubMed  Google Scholar 

  • Rogers RD, Owen AM, Middleton HC, Williams EJ, Pickard JD, Sahakian BJ, Robbins TW (1999a) Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbitofrontal cortex. J Neurosci 20:9029–9038.

    Google Scholar 

  • Rogers RD, Blackshaw AJ, Middleton HC, Matthews K, Hawtin K, Crowley C, Hopwood A, Wallace C, Deakin JFW, Sahakian BJ, Robbins TW (1999b) Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behavior. Psychopharmacology 146:482–491.

    CAS  PubMed  Google Scholar 

  • Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JFW, Sahakian BJ, Robbins TW (1999c) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339.

    Article  CAS  PubMed  Google Scholar 

  • Rogers RD, Andrews TC, Grasby PM, Brooks DJ, Robbins TW (2000) Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosci 12:142–162.

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (1999) The functions of the orbitofrontal cortex. Neurocase 5:301–312.

    Article  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1990) Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63:1401–1412.

    CAS  PubMed  Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610.

    CAS  PubMed  Google Scholar 

  • Schultz W (1997) Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 7:191–197.

    Article  CAS  PubMed  Google Scholar 

  • Sharpe HS (1990) Distractibility in early Parkinson’s disease. Cortex 26:239–246.

    CAS  PubMed  Google Scholar 

  • Simon H (1981) Dopaminergic A10 neurons and the frontal system. J Physiol 77:81–95.

    CAS  Google Scholar 

  • Sohn M, Ursu S, Anderson JR, Stenger VA, Carter CS (2000) The role of prefrontal cortex and posterior parietal cortex in task switching. Proc Natl Acad Sci USA 97:13448–13453.

    CAS  PubMed  Google Scholar 

  • Sonuga-Barke EJ (2002) Psychological heterogeneity in AD/HD-a dual pathway model of behavior and cognition. Behav Brain Res 130.

    Google Scholar 

  • Stam CJ, Visser SL, Op de Coul AAW, De Sonneville LMJ, Schellens RILA, Brunia CHM, De Smet JS, Gielen G (1993) Disturbed frontal regulation of attention in Parkinson’s disease. Brain 116:1139–1158.

    PubMed  Google Scholar 

  • Swainson R, Rogers RD, Sahakian BJ, Summers BA, Polkey CE, Robbins TW (2000) Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia 38:596–612.

    Article  CAS  PubMed  Google Scholar 

  • Thierry AM, Tassin JP, Blanc G, Glowinski J (1976) Selective activation of mesocortical DA system by stress. Nature 263:242–244.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Kodama T, Hikosaka K (1997) Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol 78:2795–2798.

    CAS  PubMed  Google Scholar 

  • Wenk GL, Pierce DJ, Struble RG, Price DL, Cork LC (1989) Age-related changes in multiple neurotransmitter systems in the monkey brain. Neurobiol Aging 9:11–19.

    Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575.

    CAS  PubMed  Google Scholar 

  • Wright MJ, Burns RJ, Geffen GM, Geffen LB (1990) Covert orientation of visual attention in Parkinson’s disease: an impairment in the maintenance of attention. Neuropsychologia 28:151–159.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, LaBar KS, McCarthy G (2002) Dissociable prefrontal brain systems for attention and emotion. Proc Natl Acad Sci USA 99:11447–11451.

    Article  CAS  PubMed  Google Scholar 

  • Yang CR, Seamans JK (1996) Dopamine D1 receptor actions in layers V–VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J Neurosci 16:1922–1935.

    CAS  PubMed  Google Scholar 

  • Yerkes RM, Dodson JD (1908) The relation of the strength of stimulus to the rapidity of habit formation. J Comp Neurol Psychol 18:459–482.

    Article  Google Scholar 

  • Zahrt J, Taylor JR, Mathew RG, Arnsten AFT (1997) Supranormal Stimulation of D1 Dopamine Receptors in the Rodent Prefrontal Cortex Impairs Spatial Working Memory Performance. J Neurosci 17:8528–8535.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cools, R., Roberts, A.C. (2004). The Role of Dopamine in Cognition: Insights from Neuropsychological Studies in Humans and Non-Human Primates. In: Otani, S. (eds) Prefrontal Cortex: From Synaptic Plasticity to Cognition. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7949-4_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7949-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7766-1

  • Online ISBN: 978-1-4020-7949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics