Skip to main content

Ultralow-Voltage Memory Circuits

  • Chapter
Design of System on a Chip
  • 257 Accesses

Abstract

The key design issues for ultralow-voltage (0.5–2 V) memory circuits are reviewed in terms of stable memory-cell operation, subthreshold current reduction, suppression of or compensation for design-parameter variations, and a single power supply and its standardization. The results obtained are as follows. (1) In DRAMs, coupled with high signal-to-noise-ratio memory-cell designs, the gate-source offset driving schemes suppress the cell-transistor subthreshold current increased by reduction of the threshold-voltage (VT). The gate-source self-backbiasing scheme drastically reduces the subthreshold current of the peripheral circuit, especially of iterative circuit blocks. Multi-VT and dynamic VT schemes recently proposed for logic LSI chips are also effective in reducing the subthreshold current. Various on-chip voltage generators and converters are becoming increasingly important in suppressing or compensating for the design parameter variations and in implementing and standardizing a single power supply. In SRAMs, a boosted power-supply scheme for the cell will eventually become necessary in order to accommodate the cell transistor’s high-VT needed to suppress a huge array subthreshold current. (2) SOI circuits are attractive in terms of ultralow-voltage operation although the floating body issue remains unsolved. Intrinsic fluctuations of FET parameters caused by random microscopic fluctuations in dopant atoms in an extremely short channel of 0.1 mm or so may limit ultralow-voltage operation, thus requiring new device designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. K. Itoh et al., “Trends in low-power RAM circuit technologies,” IEEE Proc., vol. 83, pp. 524–543, Apr. 1995.

    Article  Google Scholar 

  2. K. Itoh, “Trends in megabit DRAM circuit design,” IEEE J. Solid-State Circuits, vol. 25, pp. 778–789, June 1990.

    Article  Google Scholar 

  3. K. Itoh et al., “Limitations and challenges of multigigabit DRAM chip design,” IEEE J. Solid-State Circuits, vol. 32, pp. 624–634, May 1997.

    Article  Google Scholar 

  4. K. Itoh, “Low power memory design,” in Low Power Design Methodologies, J. M. Rabaey and M. Pedram, Eds. Norwell, MA: Kluwer, Oct. 1995, pp. 201–251.

    Google Scholar 

  5. K. Itoh, VLSI Memory Design (in Japanese), Baifukan, Nov. 1994.

    Google Scholar 

  6. Low Power CMOS Design, R. Brodersen and A. Chandrakasan, Eds.: IEEE Press Book, 1997.

    Google Scholar 

  7. A. Koike, “Key issues in manufacturing of Giga era,” in 1996 VLSI Technology Workshop Digest.

    Google Scholar 

  8. T. Tsuruda et al., “High-speed/high-bandwidth design methodo-logies for on-chip DRAM core multimedia system LSI’s,” IEEE J. Solid-State Circuits, vol. 32, pp. 447–482, March 1997.

    Article  Google Scholar 

  9. M. Horiguchi et al., “Switched-source-impedance CMOS circuit for low standby current giga-scale LSI’s,” in Symp. VLSI Circuits Dig. Tech. Papers, May 1993, pp. 47–48.

    Google Scholar 

  10. S. Mutoh et al., “1V high-speed digital circuit technology with 0.5mm multi-threshold CMOS,” in IEEE ASIC Conf. Dig. Tech. Papers, Sept. 1993, pp. 186–189.

    Google Scholar 

  11. H. Akamatsu et al., “A low power data holding circuit with an intermittent power supply scheme for sub-1V MT-CMOS LSIs,” in Symp. VLSI Crircuits Dig. Tech. Papers, June 1996, pp. 14–15.

    Google Scholar 

  12. D. Takashima et al., “Stand-by/active mode logic for sub-1V 1G/4Gb DRAMs,” in Symp. VLSI Circuits Dig. Tech. Papers, May 1993, pp. 83–84.

    Google Scholar 

  13. T. Kuroda et al., “A 0.9V 150MHz 10mW 4mm2 2-D discrete cosine transform core processor with variable-threshold-voltage scheme,” in ISSCC Dig. Tech. Papers, Feb. 1996, pp. 166–167.

    Google Scholar 

  14. M. Mizuno et al., “Elastic-Vt CMOS circuits for multiple on-chip power control,” in ISSCC Dig. Tech. Papers, Feb. 1996, pp. 300–301.

    Google Scholar 

  15. T. Ooishi et al., “A well-synchronized sensing/equalizing method for sub-1.0V operating advanced DRAMs,” in Symp. VLSI Circuits Dig. Tech. Papers, May 1993, pp. 81–82.

    Google Scholar 

  16. L. S. Y. Wong and G. A. Rigby, “A 1V CMOS digital circuit with double-gate-driven MOSFET,” in ISSCC Dig. Tech. Papers, Feb. 1997, pp. 292–293.

    Google Scholar 

  17. K. Ishibashi et al., “A 1-V TET-load SRAM using a two-step word-voltage method,” in ISSCC Dig. Tech.Papers, Feb. 1992, pp.206–207.

    Google Scholar 

  18. K. Ishibashi et al., “A 6-ns 4-Mb CMOS SRAM with offset-voltage-insensitive current sense amplifiers,” IEEE J. Solid-State Circuits, vol. 30,pp. 480–486, April 1995.

    Google Scholar 

  19. H. Morimura et al., “A 1-V 1-Mb SRAM for portable equipment,” in Symp. Low Power Electronics and Design, August 1996, pp. 61–66.

    Google Scholar 

  20. H. Mizuno et al., “Driving source-line (DSL) cell architecture for sub-1-V high-speed low-power applications,” in Symp. VLSI Circ. Dig. Tech. Papers, June 1995, pp. 25–26.

    Google Scholar 

  21. H. Yamaguchi et al., “A 0.8V/100MHz/Sub-5mW-operated mega-bit SRAM cell architecture with charge-recycle offset-source driving (OSD) scheme,” in Symp. VLSI Circ. Dig. Tech. Papers, June 1996, pp. 126–127.

    Google Scholar 

  22. K. Itoh et al., “A deep sub-V, single power-supply SRAM cell with multi-VT, boosted storage node and dynamic load,” in Symp. VLSI Circ. Dig. Tech. Papers, June 1996, pp. 132–133.

    Google Scholar 

  23. Y. Yamaguchi et al., “Features of SOI DRAM’s and their potential for low-voltage and/or giga-bit scale DRAM’s,” IEICE Trans. Electron., vol. E79-C, pp. 772–780, June 1996.

    Google Scholar 

  24. S. Kuge et al., “SOI-DRAM circuit technologies for low power high speed multi-giga scale memories,” in Symp. VLSI Circ. Dig. Tech. Papers, 1995, pp. 103–104.

    Google Scholar 

  25. Y. Yamaguchi et al., “Low-voltage operation of high-resistively load SOI SRAM cell by reduced back-gate-bias effect,” IEICE Trans. Electron., vol. E78-C, pp. 812–817, July 1995.

    Google Scholar 

  26. K. Ueda et al., “A CAD-compatible SOI/CMOS gate array having body-fixed partially-depleted transistors,” in ISSCC Dig. Tech. Papers, Feb. 1997, pp. 288–289.

    Google Scholar 

  27. K. Shimomura et al., “A 1V 46ns 16Mb SOI-DRAM with body control technique,” in ISSCC Dig. Tech. Papers, Feb.1997, pp.68–69.

    Google Scholar 

  28. F. Assaderaghi et al., “A novel Silicon-on-insulator (SOI) MOFET for ultralow voltage operation,” in 1994 Symp. Low Power Electronics Dig. Tech. Papers, pp. 58–59.

    Google Scholar 

  29. T. Fuse et al., “A 0.5V 200MHz 1-stage 32b ALU using a body bias controlled SOI pass-gate logic,“ in ISSCC Dig. Tech. Papers, Feb. 1997, pp. 286–287.

    Google Scholar 

  30. T. Douseki et al., “A 0.5V SIMOX-MTCMOS circuit with 200ps logic gate,” in ISSCC Dig. Tech. Papers, Feb. 1996, pp. 84–85.

    Google Scholar 

  31. F. Morishita et al., “Leakage mechanism due to floating body and countermeasure on dynamic retention mode of SOI-DRAM,” in Symp. VLSI Tech. Dig. Tech. papers, 1995, pp. 141–142.

    Google Scholar 

  32. T. Tanigawa et al., “Improvement of refresh characteristics by SIMOX technology for giga-bit DRAM’s,” IEICE Trans. Electron., vol. E79-C, pp. 781–786, June 1996.

    Google Scholar 

  33. S. Tomishima et al., “A long data retention SOI-DRAM with the body refresh function,” in Symp. VLSI Circ. Dig. Tech. Papers, June 1996, pp. 198–199.

    Google Scholar 

  34. Y. Tosaka et al., “Theoretical study of alpha-particle-induced soft errors in submicron SOI SRAM,” IEICE Trans. Electron., vol. E79-C, pp. 767–771, June 1996.

    Google Scholar 

  35. V. K. De et al., “Random MOSFET parameter fluctuation limits to gigascale integration (GSI),” in Symp. VLSI Tech Dig. Tech. Papers, June 1996, pp. 198–199.

    Google Scholar 

  36. J. D. Meindl et al., “The impact of stochastic dopant and interconnect distributions on gigascale integration,” in ISSCC Dig. Tech. Papers, Feb. 1997, pp. 232–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Itoh, K. (2004). Ultralow-Voltage Memory Circuits. In: Reis, R., Jess, J.A.G. (eds) Design of System on a Chip. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7929-X_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7929-X_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7928-3

  • Online ISBN: 978-1-4020-7929-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics