Skip to main content

Molecular Cytogenetic Studies for Hematological Malignancies

  • Chapter
Hematopathology in Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 121))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fan Y-S: Molecular Cytogenetics. In Methods Mol Biol. 2002; Vol 204, pp 411.

    Google Scholar 

  2. Dewald G, Ketterling RP, Wyatt WA, Stupca P. Cytogenetic Studies in Neoplastic Hematologic Disorders. In Clinical Laboratory Medicine. Edited by K McClatchey, 2nd edition. Baltimore, Williams and Wilkens, 2002; 658–685.

    Google Scholar 

  3. Dewald GW, Wyatt WA, Juneau AL, Carlson RO, Zinsmeister AR, Jalal SM, Spurbeck JL, Silver RT. Highly sensitive fluorescence in situ hybridization method to detect double BCR/ABL fusion and monitor response to therapy in chronic myeloid leukemia. Blood 1998; 91:3357–3365.

    CAS  PubMed  Google Scholar 

  4. Tefferi A, Schad CR, Pruthi RK, Ahmann GJ, Spurbeck JL, Dewald GW. Fluorescent in situ hybridization studies of lymphocytes and neutrophils in chronic granulocytic leukemia. Cancer Genet Cytogenet 1995; 83:61–64.

    Article  CAS  PubMed  Google Scholar 

  5. (1995) I. An international system for human Cytogenetic nomenclature. Edited by F Mitelman. Basel, S. Karger, 1995

    Google Scholar 

  6. Shtalrid M, Talpaz M, Kurzrock R, Kantarjian H, Trujillo J, Gutterman J, Yoffe G, Blick M. Analysis of breakpoints within the bcr gene and their correlation with the clinical course of Philadelphia-positive chronic myelogenous leukemia. Blood 1988; 72:485–490.

    CAS  PubMed  Google Scholar 

  7. Gonzalez F, Anguita E, Mora A, Asenjo S, de Miguel D, Villegas A: Deletion of the 3′ bcr side in chronic myelogenous leukaemia. Educational Book for the Fourth Congress of the European Haematology Association held in Barcelona, Spain, on June 9–12, 1999. (Abstract). Haematologica 1999; 84:93.

    Google Scholar 

  8. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984; 36:93–99.

    Article  CAS  PubMed  Google Scholar 

  9. Dewald GW, Wyatt WA, Silver RT. Atypical BCR and ABL D-FISH patterns in chronic myeloid leukemia and their possible role in therapy. Leuk Lymphoma 1999; 34:481–491.

    CAS  PubMed  Google Scholar 

  10. Marlton P, Claxton DF, Liu P, Estey EH, Beran M, LeBeau M, Testa JR, Collins FS, Rowley JD, Siciliano MJ. Molecular characterization of 16p deletions associated with inversion 16 defines the critical fusion for leukemogenesis. Blood 1995; 85:772–779.

    CAS  PubMed  Google Scholar 

  11. Kuss BJ, Deeley RG, Cole SP, Willman CL, Kopecky KJ, Wolman SR, Eyre HJ, Lane SA, Nancarrow JK, Whitmore SA, et al. Deletion of gene for multidrug resistance in acute myeloid leukaemia with inversion in chromosome 16: prognostic implications. Lancet 1994; 343:1531–1534.

    Article  CAS  PubMed  Google Scholar 

  12. Shimizu K, Miyoshi H, Kozu T, Nagata J, Enomoto K, Maseki N, Kaneko Y, Ohki M. Consistent disruption of the AML1 gene occurs within a single intron in the t(8;21) chromosomal translocation. Cancer Res 1992; 52:6945–6948.

    CAS  PubMed  Google Scholar 

  13. Konig M, Reichel M, Marschalek R, Haas OA, Strehl S. A highly specific and sensitive fluorescence in situ hybridization assay for the detection of t(4;11)(q21;q23) and concurrent submicroscopic deletions in acute leukaemias. Br J Haematol 2002; 116:758–764.

    Article  CAS  PubMed  Google Scholar 

  14. Godon C, Proffitt J, Dastugue N, Lafage-Pochitaloff M, Mozziconacci MJ, Talmant P, Hackbarth M, Bataille R, Avet-Loiseau H. Large deletions 5′ to the ETO breakpoint are recurrent events in patients with t(8;21) acute myeloid leukemia. Leukemia 2002; 16:1752–1754.

    Article  CAS  PubMed  Google Scholar 

  15. Morgan JA, Yin Y, Borowsky AD, Kuo F, Nourmand N, Koontz JI, Reynolds C, Soreng L, Griffin CA, Graeme-Cook F, Harris NL, Weisenburger D, Pinkus GS, Fletcher JA, Sklar J. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res 1999; 59:6205–6213.

    CAS  PubMed  Google Scholar 

  16. Akagi T, Motegi M, Tamura A, Suzuki R, Hosokawa Y, Suzuki H, Ota H, Nakamura S, Morishima Y, Taniwaki M, Seto M. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 1999; 18:5785–5794.

    Article  CAS  PubMed  Google Scholar 

  17. Baens M, Steyls A, Dierlamm J, De Wolf-Peeters C, Marynen P. Structure of the MLT gene and molecular characterization of the genomic breakpoint junctions in the t(11;18)(q21;q21) of marginal zone B-cell lymphomas of MALT type. Genes Chromosomes Cancer 2000; 29:281–291.

    Article  CAS  PubMed  Google Scholar 

  18. Mitelman F: The cytogenetic scenario of chronic myeloid leukemia. Leuk Lymphoma 1993; 11:11–15.

    Article  PubMed  Google Scholar 

  19. Dewald GW, Davis MP, Pierre RV, O’Fallon JR, Hoagland HC. Clinical characteristics and prognosis of 50 patients with a myeloproliferative syndrome and deletion of part of the long arm of chromosome 5. Blood 1985; 66:189–197.

    CAS  PubMed  Google Scholar 

  20. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, Ohyashiki K, Toyama K, Aul C, Mufti G, Bennett J. International scoring system for evaluating prognosis in myelodysplastic syndromes. 1997; Blood 89:2079–2088.

    CAS  PubMed  Google Scholar 

  21. Schad CR, Hanson CA, Paietta E, Casper J, Jalal SM, Dewald GW. Efficacy of fluorescence in situ hybridization for detecting PML/RARA gene fusion in treated and untreated acute promyelocytic leukemia. Mayo Clin Proc 1994; 69:1047–1053.

    CAS  PubMed  Google Scholar 

  22. Buno I, Wyatt WA, Zinsmeister AR, Dietz-Band J, Silver RT, Dewald GW. A special fluorescent in situ hybridization technique to study peripheral blood and assess the effectiveness of interferon therapy in chronic myeloid leukemia. Blood 1998; 92:2315–2321.

    CAS  PubMed  Google Scholar 

  23. Dewald G, Brockman S, Paternoster S, Bone N, O’Fallon J, Allmer C, James C, Jelinek D, Tschumper R, Hanson C, Pruthi R, Witzig T, Kay N. Chromosome anomalies detected by interphase FISH: correlation with significant biological features of B-cell chronic lymphocytic leukemia. Br J Haematol 2003; 121(2): 287–295.

    Article  PubMed  Google Scholar 

  24. Paternoster SF, Brockman SR, McClure RF, Remstein ED, Kurtin PJ, Dewald GW. A new method to extract nuclei from paraffin-embedded tissue to study lymphomas using interphase fluorescence in situ hybridization. Am J Pathol 2002; 160:1967–1972.

    CAS  PubMed  Google Scholar 

  25. Brockman SR, Paternoster SF, Ketterling RP, Dewald GW. New highly sensitive fluorescence in situ hybridization method to detect PML/RARα fusion in acute promyelocytic leukemia. Cancer Genet Cytogenet 2003; 145:144–151.

    Article  CAS  PubMed  Google Scholar 

  26. CAP: College of American Pathologists Cytogenetics Inspection Checklists. Northfield, IL, College of American Pathologists, 2000.

    Google Scholar 

  27. Friend SH, Dryja TP, Weinberg RA. Oncogenes and tumor-suppressing genes. N Engl J Med 1988; 318:618–622.

    CAS  PubMed  Google Scholar 

  28. Wain HM, Bruford EA, Lovering RC, Lush MJ, Wright MW, Povey S. Guidelines for human gene nomenclature. Genomics 2002; 79:464–470.

    Article  CAS  PubMed  Google Scholar 

  29. Wain HM, Lush M, Ducluzeau F, Povey S: Genew. The human gene nomenclature database. Nucleic Acids Res 2002; 30:169–171.

    Article  CAS  PubMed  Google Scholar 

  30. Dewald GW, Brothman AR, Butler MG, Cooley LD, Patil SR, Saikevych IA, Schneider NR. Pilot studies for proficiency testing using fluorescence in situ hybridization with chromosome-specific DNA probes: a College of American Pathologists/American College of Medical Genetics Program. Arch Pathol Lab Med 1997; 121:359–367.

    CAS  PubMed  Google Scholar 

  31. Mascarello JT, Cooley LD, Davison K, Dewald GW, Brothman AR, Herrman M, Park JP, Persons DL, Rao KW, Schneider NR, Vance GH. As currently formulated, ISCN FISH nomenclature is not practical for use in clinical test reports or cytogenetic databases. Genet Med 2003; 5:370–377.

    Article  PubMed  Google Scholar 

  32. Jenkins RB, Le Beau MM, Kraker WJ, Borell TJ, Stalboerger PG, Davis EM, Penland L, Fernald A, Espinosa R, 3rd, Schaid DJ, et al. Fluorescence in situ hybridization: a sensitive method for trisomy 8 detection in bone marrow specimens. Blood 1992; 79:3307–3315.

    CAS  PubMed  Google Scholar 

  33. Dewald GW, Schad CR, Christensen ER, Law ME, Zinsmeister AR, Stalboerger PG, Jalal SM, Ash RC, Jenkins RB. Fluorescence in situ hybridization with X and Y chromosome probes for cytogenetic studies on bone marrow cells after opposite sex transplantation. Bone Marrow Transplant 1993; 12:149–154.

    CAS  PubMed  Google Scholar 

  34. Juneau AL, Kaehler M, Christensen ER, Schad CR, Zinsmeister AR, Lust J, Hanson C, Dewald GW. Detection of RB1 deletions by fluorescence in situ hybridization in malignant hematologic disorders. Cancer Genet Cytogenet 1998; 103:117–123.

    Article  CAS  PubMed  Google Scholar 

  35. Remstein ED, Kurtin PJ, Buno I, Bailey RJ, Proffitt J, Wyatt WA, Hanson CA, Dewald GW. Diagnostic utility of fluorescence in situ hybridization in mantle-cell lymphoma. Br J Haematol 2000; 110:856–862.

    Article  CAS  PubMed  Google Scholar 

  36. Jalal SM, Law ME, Stamberg J, Fonseca R, Seely JR, Myers WH, Hanson CA. Detection of diagnostically critical, often hidden, anomalies in complex karyotypes of haematological disorders using multicolour fluorescence in situ hybridization. Br J Haematol 2001; 112:975–980.

    Article  CAS  PubMed  Google Scholar 

  37. Sinclair PB, Green AR, Grace C, Nacheva EP. Improved sensitivity of BCR-ABL detection: a triple-probe three-color fluorescence in situ hybridization system. Blood 1997; 90:1395–1402.

    CAS  PubMed  Google Scholar 

  38. Dewald GW, Schad CR, Christensen ER, Tiede AL, Zinsmeister AR, Spurbeck JL, Thibodeau SN, Jalal SM. The application of fluorescent in situ hybridization to detect Mbcr/abl fusion in variant Ph chromosomes in CML and ALL. Cancer Genet Cytogenet 1993; 71:7–14.

    Article  CAS  PubMed  Google Scholar 

  39. Jalal S, Law M, Dewald G: Atlas of Whole Chromosome Paint Probes. Normal Patterns and Utility for Abnormal Cases. Rochester, MN, Mayo Foundation for Medical Education and Research, 1996, pp 145.

    Google Scholar 

  40. Schad CR, Dewald GW. Building a new clinical test for fluorescence in situ hybridization. Appl Cytogenet 1995; 21:1–4.

    Google Scholar 

  41. Dewald G. Interphase FISH Studies of Chronic Myeloid Leukemia. In Molecular Cytogenetics: Protocols and Applications. Edited by YS Fan. Vol 204. Totowa, NJ, Humana Press, 2002, pp 311–342.

    Google Scholar 

  42. ACMG: American College of Medical Genetics Laboratory Practice Committee Standards and Guidelines for Clinical Genetics Laboratories. Edited by ACMG, 2nd edition. Bethesda, ACMG, 1999.

    Google Scholar 

  43. American College of Medical Genetics Laboratory Practice Committee. Metaphase fluorescence in situ hybridization (FISH). In Standards and Guidelines: Clinical Genetics Laboratories, 1996, pp 1

    Google Scholar 

  44. NYDH: New York Dept. of Health, Wadsworth Center for Laboratories and Research Genetics Laboratory Checklists. New York, New York State Department of Health, 2002

    Google Scholar 

  45. Talpaz M, Kantarjian H, Kurzrock R, Trujillo JM, Gutterman JU. Interferon-alpha produces sustained cytogenetic responses in chronic myelogenous leukemia. Philadelphia chromosome-positive patients. Ann Intern Med 1991; 114:532–538.

    CAS  PubMed  Google Scholar 

  46. Leukemia. ICSGoCM. Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med 1994; 330:820–825.

    Google Scholar 

  47. Dewald G, Stallard R, Alsaadi A, Arnold S, Blough R, Ceperich TM, Rafael Elejalde B, Fink J, Higgins JV, Higgins RR, Hoeltge GA, Hsu WT, Johnson EB, Kronberger D, McCorquodale DJ, Meisner LF, Micale MA, Oseth L, Payne JS, Schwartz S, Sheldon S, Sophian A, Storto P, Van Tuinen P, Zenger-Hain J, et al. A multicenter investigation with D-FISH BCR/ABL1 probes. Cancer Genet Cytogenet 2000; 116:97–104.

    Article  CAS  PubMed  Google Scholar 

  48. Le Gouill S, Talmant P, Milpied N, Daviet A, Ancelot M, Moreau P, Harousseau JL, Bataille R, Avet-Loiseau H. Fluorescence in situ hybridization on peripheral-blood specimens is a reliable method to evaluate cytogenetic response in chronic myeloid leukemia. J Clin Oncol 2000; 18:1533–1538.

    PubMed  Google Scholar 

  49. Cuneo A, Bigoni R, Emmanuel B, Smit E, Rigolin GM, Roberti MG, Bardi A, Piva N, Scapoli G, Castoldi G, Van Den Berghe H, Hagemeijer A. Fluorescence in situ hybridization for the detection and monitoring of the Ph-positive clone in chronic myelogenous leukemia: comparison with metaphase banding analysis. Leukemia 1998; 12:1718–1723.

    Article  CAS  PubMed  Google Scholar 

  50. Nolte M, Werner M, Ewig M, von Wasielewski R, Wilkens L, Link H, Ganser A, Georgii A. Fluorescence in situ hybridization (FISH) is a reliable diagnostic tool for detection of the 9;22 translocation. Leuk Lymphoma 1996; 22:287–294.

    Article  CAS  PubMed  Google Scholar 

  51. Muhlmann J, Thaler J, Hilbe W, Bechter O, Erdel M, Utermann G, Duba HC. Fluorescence in situ hybridization (FISH) on peripheral blood smears for monitoring Philadelphia chromosome-positive chronic myeloid leukemia (CML) during interferon treatment: a new strategy for remission assessment. Genes Chromosomes Cancer 1998; 21:90–100.

    CAS  PubMed  Google Scholar 

  52. Smoley SA, Brockman SR, Paternoster SF, Meyer RG, Dewald GW. A novel tricolor, dual-fusion fluorescence in situ hybridization method to detect BCR/ABL fusion in cells with t(9;22)(q34;q11.2) associated with deletion of DNA on the derivative chromosome 9 in chronic myelocytic leukemia. Cancer Genet Cytogenet 2004; 148:1–6.

    Article  CAS  PubMed  Google Scholar 

  53. Huntly B, Bench A, Green AR. Double jeopardy from a single translocation: deletions of the derivative chromosome 9 in chronic myeloid leukemia. Blood 2003; 102:1160–1168.

    CAS  PubMed  Google Scholar 

  54. Sinclair PB, Nacheva EP, Leversha M, Telford N, Chang J, Reid A, Bench A, Champion K, Huntly B, Green AR. Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood 2000; 95:738–743.

    CAS  PubMed  Google Scholar 

  55. Huntly BJ, Reid AG, Bench AJ, Campbell LJ, Telford N, Shepherd P, Szer J, Prince HM, Turner P, Grace C, Nacheva EP, Green AR. Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 2001; 98:1732–1738.

    Article  CAS  PubMed  Google Scholar 

  56. Kolomietz E, Al-Maghrabi J, Brennan S, Karaskova J, Minkin S, Lipton J, Squire JA. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood 2001; 97:3581–3588.

    Article  CAS  PubMed  Google Scholar 

  57. Storlazzi CT, Specchia G, Anelli L, Albano F, Pastore D, Zagaria A, Rocchi M, Liso V. Breakpoint characterization of der(9) deletions in chronic myeloid leukemia patients. Genes Chromosomes Cancer 2002; 35:271–276.

    Article  CAS  PubMed  Google Scholar 

  58. Cohen N, Rozenfeld-Granot G, Hardan I, Brok-Simoni F, Amariglio N, Rechavi G, Trakhtenbrot L. Subgroup of patients with Philadelphia-positive chronic myelogenous leukemia characterized by a deletion of 9q proximal to ABL gene: expression profiling, resistance to interferon therapy, and poor prognosis. Cancer Genet Cytogenet 2001; 128:114–119.

    Article  CAS  PubMed  Google Scholar 

  59. Popenoe DW, Schaefer-Rego K, Mears JG, Bank A, Leibowitz D. Frequent and extensive deletion during the 9,22 translocation in CML. Blood 1986; 68:1123–1128.

    CAS  PubMed  Google Scholar 

  60. Dewald GW, Wright PI. Chromosome abnormalities in the myeloproliferative disorders. Semin Oncol 1995; 22:341–354.

    CAS  PubMed  Google Scholar 

  61. Bench AJ, Cross NC, Huntly BJ, Nacheva EP, Green AR. Myeloproliferative disorders. [Review] [145 refs]. Bailliere’s Best Practice in Clinical Haematology 2001; 14:531–551.

    CAS  Google Scholar 

  62. Jaffe ES, Harris NL, Stein H, Vardiman J. World Health Organization of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France, International Agency for Research on Cancer, 2001.

    Google Scholar 

  63. Bain BJ. Chronic Myeloproliferative Disorders: Cytogenetic and Molecular Genetic Abnormalities. Unionville, CT, S. Karger Publishers, Inc, 2003, pp 132.

    Google Scholar 

  64. Adeyinka A, Dewald G. Cytogenetics of Chronic Myeloproliferative Disorders and Related Myelodysplastic Syndromes. Hematol Oncol Clin North Am, 2003; 17(5): 1129–1149.

    Article  PubMed  Google Scholar 

  65. Borgstrom GH, Knuutila S, Ruutu T, Pakkala A, Lahtinen R, de la Chapelle A. Abnormalities of chromosome 13 in myelofibrosis. Scand J Haematol 1984; 33:15–21.

    CAS  PubMed  Google Scholar 

  66. Johnson DD, Dewald GW, Pierre RV, Letendre L, Silverstein MN. Deletions of chromosome 13 in malignant hematologic disorders. Cancer Genet Cytogenet 1985; 18:235–241.

    Article  CAS  PubMed  Google Scholar 

  67. Bain BJ. Eosinophilic leukaemias and the idiopathic hypereosinophilic syndrome. Br J Haematol 1996; 95:2–9.

    CAS  PubMed  Google Scholar 

  68. Diez-Martin JL, Graham DL, Petitt RM, Dewald GW. Chromosome studies in 104 patients with polycythemia vera. Mayo Clin Proc 1991; 66:287–299.

    CAS  PubMed  Google Scholar 

  69. Pardanani A, Ketterling RP, Brockman SR, Flynn HC, Paternoster SF, Shearer BR, Reeder TL, Li CY, Cross NC, Cools JD, Gilliland DG, Dewald GW, Tefferi A. CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood 2003; 102:3093–3096.

    Article  CAS  PubMed  Google Scholar 

  70. Tefferi A, Meyer R, Wyatt WA, Dewald G. Comparison of peripheral blood interphase cytogenetics with bone marrow karyotype analysis in myelofibrosis with myeloid metaplasia. Br J Haematol 2001; 115:316–319.

    Article  CAS  PubMed  Google Scholar 

  71. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfield CD. The World Health Organization classification of hematological malignancies report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997. Mod Pathol 2000; 13:193–207.

    Article  CAS  PubMed  Google Scholar 

  72. Knapp RH, Dewald GW, Pierre RV. Cytogenetic studies in 174 consecutive patients with preleukemic or myelodysplastic syndromes. Mayo Clin Proc 1985; 60:507–516.

    CAS  PubMed  Google Scholar 

  73. Pierre RV, Catovsky D, Mufti GJ, Swansbury GJ, Mecucci C, Dewald GW, Ruutu T, Van Den Berghe H, Rowley JD, Mitelman F, et al. Clinical-cytogenetic correlations in myelodysplasia (preleukemia). Cancer Genet Cytogenet 1989; 40:149–161.

    Article  CAS  PubMed  Google Scholar 

  74. Mathew P, Tefferi A, Dewald GW, Goldberg SL, Su J, Hoagland HC, Noel P. The 5q-syndrome: a single-institution study of 43 consecutive patients. Blood 1993; 81:1040–1045.

    CAS  PubMed  Google Scholar 

  75. Dewald GW, Brecher M, Travis LB, Stupca PJ. Twenty-six patients with hematologic disorders and X chromosome abnormalities. Frequent idic(X)(q13) chromosomes and Xq13 anomalies associated with pathologic ringed sideroblasts. Cancer Genet Cytogenet 1989; 42:173–185.

    Article  CAS  PubMed  Google Scholar 

  76. Ketterling RP, Wyatt WA, VanWier SA, Law M, Hodnefield JM, Hanson CA, Dewald GW. Primary myelodysplastic syndrome with normal cytogenetics: utility of ‘FISH panel testing’ and M-FISH. Leuk Res 2002; 26:235–240.

    Article  CAS  PubMed  Google Scholar 

  77. Cherry AM, Brockman SR, Paternoster SF, Hicks GA, Higgins RR, Bennett JM, Greenberg PL, Miller K, Rowe J, Tallman MS, Dewald GW. Comparison of interphase FISH and metaphase cytogenetics to study myelodysplasia: an Eastern Cooperative Oncology Group (ECOG) study. Leuk Res 2003; 27:1085–1090.

    Article  CAS  PubMed  Google Scholar 

  78. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, Goldstone A. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998; 92:2322–2333.

    CAS  PubMed  Google Scholar 

  79. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, Paietta E, Willman CL, Head DR, Rowe JM, Forman SJ, Appelbaum FR. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000; 96:4075–4083.

    CAS  PubMed  Google Scholar 

  80. Harrison CJ, Radford-Weiss I, Ross F, Rack K, le Guyader G, Vekemans M, Macintyre E. Fluorescence in situ hybridization analysis of masked (8;21)(q22;q22) translocations. Cancer Genet Cytogenet 1999; 112:15–20.

    Article  CAS  PubMed  Google Scholar 

  81. Taviaux S, Brunei V, Dupont M, Fernandez F, Ferraz C, Carbuccia N, Sainty D, Demaille J, Birg F, Lafage-Pochitaloff M. Simple variant t(8;21) acute myeloid leukemias harbor insertions of the AML1 or ETO genes. Genes Chromosomes Cancer 1999; 24:165–171.

    Article  CAS  PubMed  Google Scholar 

  82. Dierlamm J, Stul M, Vranckx H, Michaux L, Weghuis DE, Speleman F, Selleslag D, Kramer MH, Noens LA, Cassiman JJ, Van den Berghe H, Hagemeijer A. FISH identifies inv(16)(p13q22) masked by translocations in three cases of acute myeloid leukemia. Genes Chromosomes Cancer 1998; 22:87–94.

    Article  CAS  PubMed  Google Scholar 

  83. Mancini M, Cedrone M, Diverio D, Emanuel B, Stul M, Vranckx H, Brama M, De Cuia MR, Nanni M, Fazi F, Mecucci C, Alimena G, Hagemeijer A. Use of dual-color interphase FISH for the detection of inv(16) in acute myeloid leukemia at diagnosis, relapse and during follow-up: a study of 23 patients. Leukemia 2000; 14:364–368.

    Article  CAS  PubMed  Google Scholar 

  84. Reddy KS, Wang S, Montgomery P, Grove W, Robertson LE. Fluorescence in situ hybridization identifies inversion 16 masked by t(10;16)(q24;q22), t(7;16)(q21;q22), and t(2;16)(q37;q22) in three cases of AML-M4Eo. Cancer Genet Cytogenet 2000; 116:148–152.

    CAS  PubMed  Google Scholar 

  85. Avet-Loiseau H, Godon C, Li JY, Daviet A, Mellerin MP, Talmant P, Harousseau JL, Bataille R. Amplification of the 11q23 region in acute myeloid leukemia. Genes Chromosomes Cancer 1999; 26:166–170.

    Article  CAS  PubMed  Google Scholar 

  86. Fischer K, Scholl C, Salat J, Frohling S, Schlenk R, Bentz M, Stilgenbauer S, Lichter P, Dohner H. Design and validation of DNA probe sets for a comprehensive interphase cytogenetic analysis of acute myeloid leukemia. 1996; Blood 88:3962–3971.

    CAS  PubMed  Google Scholar 

  87. Cuneo A, Bigoni R, Roberti MG, Bardi A, Rigolin GM, Piva N, Mancini M, Nanni M, Alimena G, Mecucci C, Matteucci C, La Starza R, Bernasconi P, Cavigliano P, Genini E, Zaccaria A, Testoni N, Carboni C, Castoldi G. Detection and monitoring of trisomy 8 by fluorescence in situ hybridization in acute myeloid leukemia: a multicentric study. Haematologica 1998; 83:21–26.

    CAS  PubMed  Google Scholar 

  88. Richkind KE, Mowery-Rushton PA, Chen Z, Lytle CA. Clinical utility of FISH analysis when cytogenetic studies are normal — Prospective analysis of 800 patients at diagnosis and after treatment for leukemia. Blood 2000; 96:707a.

    Google Scholar 

  89. Rowley JD, Olney HJ. International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 2002; 33:331–345.

    PubMed  Google Scholar 

  90. Look AT. Oncogenic transcription factors in the human acute leukemias. Science 1997; 278:1059–1064.

    Article  CAS  PubMed  Google Scholar 

  91. Han T, Ozer H, Sadamori N, Emrich L, Gomez GA, Henderson ES, Bloom ML, Sandberg AA. Prognostic importance of cytogenetic abnormalities in patients with chronic lymphocytic leukemia. N Eng J Med 1984; 310:288–292.

    Article  CAS  Google Scholar 

  92. Juliusson G, Oscier DG, Fitchett M, Ross FM, Stockdill G, Mackie MJ, Parker AC, Castoldi GL, Guneo A, Knuutila S, et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med 1990; 323:720–724.

    Article  CAS  PubMed  Google Scholar 

  93. Brito-Babapulle V, Garcia-Marco J, Maljaie SH, Hiorns L, Coignet L, Conchon M, Catovsky D. The impact of molecular cytogenetics on chronic lymphoid leukaemia. Acta Haematol 1997; 98:175–186.

    Article  CAS  PubMed  Google Scholar 

  94. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, Schulman P, Vinciguerra VP, Rai K, Rassenti LZ, Kipps TJ, Dighiero G, Schroeder HW, Jr, Ferrarini M, Chiorazzi N. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102:1515–1525.

    CAS  PubMed  Google Scholar 

  95. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolitz J, Lichtman SM, Schulman P, Vinciguerra VP, Rai KR, Ferrarini M, Chiorazzi N. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94:1840–1847.

    CAS  PubMed  Google Scholar 

  96. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343:1910–1916.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang Y, Weber-Matthiesen K, Siebert R, Matthiesen P, Schlegelberger B. Frequent deletions of 6q23-24 in B-cell non-Hodgkin’s lymphomas detected by fluorescence in situ hybridization. Genes Chromosomes Cancer 1997; 18:310–313.

    Article  CAS  PubMed  Google Scholar 

  98. Neilson JR, Auer R, White D, Bienz N, Waters JJ, Whittaker JA, Milligan DW, Fegan CD. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia 1997; 11:1929–932.

    Article  CAS  PubMed  Google Scholar 

  99. El Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M, Silber R, Newcomb EW. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 1993; 82:3452–3459.

    PubMed  Google Scholar 

  100. Finn WG, Kay NE, Kroft SH, Church S, Peterson LC. Secondary abnormalities of chromosome 6q in B-cell chronic lymphocytic leukemia: a sequential study of karyotypic instability in 51 patients. Am J Hematol 1998; 59:223–229.

    Article  CAS  PubMed  Google Scholar 

  101. Peterson LC, Lindquist LL, Church S, Kay NE. Frequent clonal abnormalities of chromosome band 13q14 in B-cell chronic lymphocytic leukemia: multiple clones, subclones, and nonclonal alterations in 82 midwestern patients. Genes Chromosomes Cancer 1992; 4:273–280.

    CAS  PubMed  Google Scholar 

  102. Dewald GW, Kyle RA, Hicks GA, Greipp PR. The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 1985; 66:380–390.

    CAS  PubMed  Google Scholar 

  103. Sawyer JR, Waldron JA, Jagannath S, Barlogie B. Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet Cytogenet 1995; 82:41–49.

    Article  CAS  PubMed  Google Scholar 

  104. Fonseca R, Oken MM, Harrington D, Bailey RJ, Van Wier SA, Henderson KJ, Kay NE, Van Ness B, Greipp PR, Dewald GW. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 2001; 15:981–986.

    Article  CAS  PubMed  Google Scholar 

  105. Avet-Loiseau H, Facon T, Grosbois B, Magrangeas F, Rapp MJ, Harousseau JL, Minvielle S, Bataille R. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 2002; 99:2185–2191.

    Article  CAS  PubMed  Google Scholar 

  106. Fonseca R, Harrington D, Oken MM, Dewald GW, Bailey RJ, Van Wier SA, Henderson KJ, Blood EA, Rajkumar SV, Kay NE, Van Ness B, Greipp PR. Biological and prognostic significance of interphase fluorescence in situ hybridization detection of chromosome 13 abnormalities (delta13) in multiple myeloma: an eastern cooperative oncology group study. Cancer Res 2002; 62:715–720.

    CAS  PubMed  Google Scholar 

  107. Fonseca R, Blood EA, Oken MM, Kyle RA, Dewald GW, Bailey RJ, Van Wier SA, Henderson KJ, Hoyer JD, Harrington D, Kay NE, Van Ness B, Greipp PR. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood 2002; 99:3735–3741.

    Article  CAS  PubMed  Google Scholar 

  108. Moreau P, Facon T, Leleu X, Morineau N, Huyghe P, Harousseau JL, Bataille R, Avet-Loiseau H. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood 2002; 100:1579–1583.

    Article  CAS  PubMed  Google Scholar 

  109. Fonseca R, Blood E, Rue M, Harrington D, Oken M, Kyle R, Dewald G, Van Ness B, Van Wier S, Henderson K, Bailey R, Greipp P. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101:4569–4575.

    Article  CAS  PubMed  Google Scholar 

  110. Ahmann GJ, Jalal SM, Juneau AL, Christensen ER, Hanson CA, Dewald GW, Greipp PR. A novel three-color, clone-specific fluorescence in situ hybridization procedure for monoclonal gammopathies. Cancer Genet Cytogenet 1998; 101:7–11.

    Article  CAS  PubMed  Google Scholar 

  111. Fonseca R, Coignet L, Dewald G. Cytogenetic abnormalities in multiple myeloma. In Hematol Oncol Clin North Am. Edited by R Kyle and M Gertz. Philadelphia, W. B. Saunders Co, 1999, pp 1169–1179.

    Google Scholar 

  112. Andreeff M, Pinkel D. Introduction to fluorescence in situ hybridization — principles and clinical applications, 1st edition. New York, John Wiley & Sons, Inc, 1999, pp 455.

    Google Scholar 

  113. Remstein E, Kurtin P, James C, Wang X, Meyer R, Dewald G. Detection of t(l1;18)(q21;q21) in extranodal marginal zone B-cell lymphomas of MALT type by twocolor fluorescence in situ hybridization. Presented at the Annual Meeting of the United States and Canadian Academy of Pathology. Mod Pathol 2001; 14:177A.

    Google Scholar 

  114. Haralambieva E, Kleiverda K, Mason DY, Schuuring E, Kluin PM. Detection of three common translocation breakpoints in non-Hodgkin’s lymphomas by fluorescence in situ hybridization on routine paraffin-embedded tissue sections. J Pathol 2002; 198:163–170.

    Article  CAS  PubMed  Google Scholar 

  115. Horsman DE, Gascoyne RD, Coupland RW, Coldman AJ, Adomat SA. Comparison of Cytogenetic analysis, southern analysis, and polymerase chain reaction for the detection of t(14;18) in follicular lymphoma. Am J Clin Pathol 1995; 103:472–478.

    CAS  PubMed  Google Scholar 

  116. Rowley JD. Chromosome studies in the non-Hodgkin’s lymphomas: the role of the 14;18 translocation. J Clin Oncol 1988; 6:919–925.

    CAS  PubMed  Google Scholar 

  117. Sander CA, Yano T, Clark HM, Harris C, Longo DL, Jaffe ES, Raffeld M. p53 mutation is associated with progression in follicular lymphomas. Blood 1993; 82:1994–2004.

    CAS  PubMed  Google Scholar 

  118. Pinyol M, Cobo F, Bea S, Jares P, Nayach I, Fernandez PL, Montserrat E, Cardesa A, Campo E. p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin’s lymphomas. Blood 1998; 91:2977–2984.

    CAS  PubMed  Google Scholar 

  119. Elenitoba-Johnson KS, Gascoyne RD, Lim MS, Chhanabai M, Jaffe ES, Raffeld M. Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma. Blood 1998; 91:4677–4685.

    CAS  PubMed  Google Scholar 

  120. Peng HZ, Du MQ, Koulis A, Aiello A, Dogan A, Pan LX, Isaacson PG. Nonimmunoglobulin gene hypermutation in germinal center B cells. Blood 1999; 93:2167–2172.

    CAS  PubMed  Google Scholar 

  121. Vandenberghe E, De Wolf-Peeters C, van den Oord J, Wlodarska I, Delabie J, Stul M, Thomas J, Michaux JL, Mecucci C, Cassiman JJ, et al. Translocation (11;14): a cytogenetic anomaly associated with B-cell lymphomas of non-follicle centre cell lineage. J Pathol 1991; 163:13–8.

    Article  CAS  PubMed  Google Scholar 

  122. Li JY, Gaillard F, Moreau A, Harousseau JL, Laboisse C, Milpied N, Bataille R, Avet-Loiseau H. Detection of translocation t(11;14)(q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization. Am J Pathol 1999; 154:1449–452.

    CAS  PubMed  Google Scholar 

  123. Vaandrager JW, Schuuring E, Zwikstra E, de Boer CJ, Kleiverda KK, van Krieken JH, Kluin-Nelemans HC, van Ommen GJ, Raap AK, Kluin PM. Direct visualization of dispersed 11q13 chromosomal translocations in mantle cell lymphoma by multicolor DNA fiber fluorescence in situ hybridization. Blood 1996; 88:1177–1182.

    CAS  PubMed  Google Scholar 

  124. Paternoster S, Rodacker M, Powell C, Hanson C, Wyatt WA, Dewald G. Comparison of karyotype and results of FISH using probes for five common chromosome anomalies in acute lymphoblastic leukemia. Association of Genetic Technologists Meeting Minneapolis 2001.

    Google Scholar 

  125. Williams ME, Whitefield M, Swerdlow SH. Analysis of the cyclin-dependent kinase inhibitors p18 and p19 in mantle-cell lymphoma and chronic lymphocytic leukemia. Ann Oncol 1997; 8:71–73.

    PubMed  Google Scholar 

  126. Williams M, Woytowitz D, Finkelstein S, Swerdlow S. MTS1/MTS2 (p15/p16) deletions and p53 mutations in mantle cell (centrocytic) lymphoma. Blood 1995; 86:747a.

    Google Scholar 

  127. Cataldo KA, Jalal SM, Law ME, Ansell SM, Inwards DJ, Fine M, Arber DA, Pulford KA, Strickler JG. Detection of t(2;5) in anaplastic large cell lymphoma: comparison of immunohistochemical studies, FISH, and RT-PCR in paraffin-embedded tissue. Am J Surg Pathol 1999; 23:1386–1392.

    Article  CAS  PubMed  Google Scholar 

  128. Sanchez-Izquierdo D, Buchonet G, Siebert R, Gascoyne RD, Climent J, Karran L, Marin M, Blesa D, Horsman D, Rosenwald A, Staudt LM, Albertson DG, Du MQ, Ye H, Marynen P, Garcia-Conde J, Pinkel D, Dyer MJ, Martinez-Climent JA. MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. 2003; Blood 30:30.

    Google Scholar 

  129. Remstein ED, Kurtin PJ, James CD, Wang X, Meyer RG, Dewald GW. Mucosa-associated lymphoid tissue lymphomas with t(11;18)(q21;q21) and mucosa-associated lymphoid tissue lymphomas with aneuploidy develop along different pathogenetic pathways. Am J Pathol 2002; 161:63–71.

    PubMed  Google Scholar 

  130. Streubel B, Lamprecht A, Dierlamm J, Cerroni L, Stolte M, Ott G, Raderer M, Chott A. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 2002; 24:24.

    Google Scholar 

  131. Yunis JJ, Mayer MG, Arnesen MA, Aeppli DP, Oken MM, Frizzera G. bcl-2 and other genomic alterations in the prognosis of large-cell lymphoma. N Engl J Med 1989; 320:1047–1054.

    Article  CAS  PubMed  Google Scholar 

  132. Weiss LM, Warnke RA, Sklar J, Cleary ML. Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 1987; 317:1185–1189.

    CAS  PubMed  Google Scholar 

  133. Lipford E, Wright JJ, Urba W, Whang-Peng J, Kirsch IR, Raffeld M, Cossman J, Longo DL, Bakhshi A, Korsmeyer SJ. Refinement of lymphoma cytogenetics by the chromosome 18q21 major breakpoint region. Blood 1987; 70:1816–1823.

    CAS  PubMed  Google Scholar 

  134. McClure RF, Macon W, Remstein ED, Dewald G, Kurtin PJ. Burkitt-like lymphoma and diffuse large B-cell lymphoma in adults form a continuum that is distinct from classical Burkitt lymphoma. J Clin Pathol 2002; 55(Suppl I):A21–A22.

    Google Scholar 

  135. Pickering D, Nelson M, Chan W, Huang J, Dave B, Sanger W. Paraffin tissue core sectioning: An improved technique for whole nuclear extraction and interphase FISH. J Assoc Genet Technol 2001; 27:38–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dewald, G.W., Brockman, S.R., Paternoster, S.F. (2004). Molecular Cytogenetic Studies for Hematological Malignancies. In: Finn, W.G., Peterson, L.C. (eds) Hematopathology in Oncology. Cancer Treatment and Research, vol 121. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7920-6_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7920-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7919-1

  • Online ISBN: 978-1-4020-7920-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics