Skip to main content

Regulation of O2-Sensitive K+ Channels by a Mitochondrial Redox Sensor: Implications for Hypoxic Pulmonary Vasoconstriction

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams JP, Leslie AG, Lutter R, and Walker JE. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994; 370: 621–628.

    Article  CAS  PubMed  Google Scholar 

  2. Ackerman MJ and Clapham DE. Ion channels — basic science and clinical disease. N. Engl. J.Med. 1997; 336: 1575–1586.

    Article  CAS  PubMed  Google Scholar 

  3. Archer, S, McMurtry, IF, and Weir, EK. “Mechanisms of acute hypoxic and hyperoxic changes in pulmonary vascular reactivity.” In Pulmonary Vascular Physiology and Pathophysiology, Weir EK, and Reeves JT, eds. New York, NY: Marcel Dekker Inc., 1988, p. 241–290.

    Google Scholar 

  4. Archer S and Michelakis E. The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O2 sensors, and controversies. News Physiol. Sci. 2002; 17:131–137.

    CAS  PubMed  Google Scholar 

  5. Archer S and Rich S. Primary pulmonary hypertension: a vascular biology and translational research “Work in progress”. Circulation. 2000; 102: 2781–2791.

    CAS  PubMed  Google Scholar 

  6. Archer S, Tolins JP, Raij L, and Weir EK. Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium derived relaxing factor. Biochem. Biophys. Res. Comm. 1989; 164: 1198–1205.

    Article  CAS  PubMed  Google Scholar 

  7. Archer S, Will JA, and Weir EK. Redox status in the control of pulmonary vascular tone. Herz. 1986; 11: 127–141.

    CAS  PubMed  Google Scholar 

  8. Archer S, Yankovich RD, Chesler E, and Weir EK. Comparative effects of nisoldipine, nifedipine and bepridil on experimental pulmonary hypertension. J. Pharmacol. Exp. Ther. 1985; 233: 12–17.

    CAS  PubMed  Google Scholar 

  9. Archer SL, Hampl V, Nelson DP, Sidney E, Peterson DA, and Weir EK. Dithionite increases radical formation and decreases vasoconstriction in the lung. Evidence that dithionite does not mimic alveolar hypoxia. Circ. Res. 1995; 77: 174–181.

    CAS  PubMed  Google Scholar 

  10. Archer SL, Huang J, Henry T, Peterson D, and Weir EK. A redox-based O2 sensor in rat pulmonary vasculature. Circ. Res. 1993; 73: 1100–1112.

    CAS  PubMed  Google Scholar 

  11. Archer SL, Huang JM, Reeve HL, Hampl V, Tolarová S, Michelakis E, and Weir EK. Differential distribution of electrophysiologically distinc myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ. Res. 1996; 78: 431–442.

    CAS  PubMed  Google Scholar 

  12. Archer SL, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, Waite RE, and Michelakis ED. Impairment of hypoxic pulmonary vasoconstriction in mice tacking the voltage-gated potassium channel Kv1.5. Faseb J. 2001; 15: 1801–1803.

    CAS  PubMed  Google Scholar 

  13. Archer SL, Nelson D, and Weir EK. Characterization of radical production by xanthine/xanthine oxidase, in vitro and in rat lungs, using chemiluminescence. J. Appl. Physiol. 1989; 67: 1912–1921.

    CAS  PubMed  Google Scholar 

  14. Archer SL, Nelson DP, and Weir EK. Simultaneous measurement of O2 radicals and pulmonary vascular reactivity in rat lung. J. Appl. Physiol. 1989; 67: 1903–1911.

    CAS  PubMed  Google Scholar 

  15. Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC, and Weir EK. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc. Natl. Acad. Sci. USA. 1999; 96: 7944–7949.

    Article  CAS  PubMed  Google Scholar 

  16. Archer, SL and Rusch, NJ, eds., Potassium Channels in Cardiovascular Biology. New York, NY: Kluwer Academic/Plenum Publishers, 2001.

    Google Scholar 

  17. Archer SL, Souil E, Dinh-Xuan AT, Schremmer B, Mercier JC, El Yaagoubi A, Nguyen-Huu L, Reeve HL, and Hampl V. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J. Clin. Invest. 1998; 101: 2319–2330.

    CAS  PubMed  Google Scholar 

  18. Attali B, Wang N, Kolot A, Sobko A, Cherepanov V, and Soliven B. Characterization of delayed rectifier Kv channels in oligodendrocytes and progenitor cells. J. Neurosci. 1997; 17: 8234–8245.

    CAS  PubMed  Google Scholar 

  19. Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J. Bioenerg. Biomembr. 1999; 31: 347–366.

    Article  CAS  PubMed  Google Scholar 

  20. Bennie RE, Packer CS, Powell DR, Jin N, and Rhoades RA. Biphasic contractile response of pulmonary artery to hypoxia. Am. J. Physiol. 1991; 261: L156–L163.

    CAS  PubMed  Google Scholar 

  21. Brandt U. Proton-translocation by membrane-bound NADH:ubiquinone-oxireductase (complex I) through redox-gated ligand conduction. Biochem.Biophys.Acta. 1997; 1318:79–91.

    CAS  PubMed  Google Scholar 

  22. Brimioulle S, LeJeune P, and Naeije R. Effects of hypoxic pulmonary vasoconstriction on pulmonary gas exchange. J. Appl. Physiol. 1996; 81: 1535–1543.

    CAS  PubMed  Google Scholar 

  23. Buescher PC, Pearse DB, Pillai RP, Litt MC, Mitchell MC, and Sylvester JT. Energy state and vasomotor tone in hypoxic pig lungs. J. Appl. Physiol. 1991; 70: 1874–1881.

    CAS  PubMed  Google Scholar 

  24. Burke T and Wolin M. Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. Am. J. Physiol. 1987; 252: H721–H732.

    CAS  PubMed  Google Scholar 

  25. Carlsson AJ, Bindslev L, and Hedenstierna G. Hypoxia-induced pulmonary vasoconstriction in the human lung. The effect of isoflurane anesthesia. Anesthesiology. 1987; 66: 312–316.

    CAS  PubMed  Google Scholar 

  26. Conforti L and Millhorn DE. Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells by hypoxia. J. Physiol. 1997; 502: 293–305.

    Article  CAS  PubMed  Google Scholar 

  27. Coppock EA, Martens JR, and Tamkun MM. Molecular basis of hypoxia-induced pulmonary vasoconstriction: role of voltage-gated K+ channels. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 281: L1–L12.

    CAS  PubMed  Google Scholar 

  28. Corda S, Laplace C, Vicaut E, and Duranteau J. Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am. J. Respir. Cell Mol. Biol. 2001; 24: 762–768.

    CAS  PubMed  Google Scholar 

  29. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, and Harman D. Oxygen radicals and human diseases. Ann. Intern. Med. 1987; 107: 526–545.

    CAS  PubMed  Google Scholar 

  30. Degli Esposti M, Ngo A, McMullen GL, Ghelli A, Sparla F, Benelli B, Ratta M, and Linnane AW. The specificity of mitochondrial complex I for ubiquinones. Biochem. J. 1996; 313: 327–334.

    CAS  PubMed  Google Scholar 

  31. Demple B and Amabile-Cuevas CF. Redox redux: the control of oxidative stress responses. Cell. 1991; 67: 837–839.

    Article  CAS  PubMed  Google Scholar 

  32. Dorrington KL, Clar C, Young JD, Jonas M, Tansley JG, and Robbins PA. Time course of the human pulmonary vascular response to 8 hours of isocapnic hypoxia. Am. J. Physiol. 1997; 273: H1126–H1134.

    CAS  PubMed  Google Scholar 

  33. Franco-Obregon A, and Lopez-Barneo J. Differential oxygen sensitivity of calcium channels in rabbit smooth muscle cells of conduit and resistance pulmonary arteries. J. Physiol. 1996; 491: 511–518.

    CAS  PubMed  Google Scholar 

  34. Fridovitch I. Superoxide and superoxide dismutase. Annu. Rev. Biochem. 1995; 64: 97–112.

    Google Scholar 

  35. Fu XW, Nurse CA, Wong V, and Cutz E. Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J. Physiol. 2002; 539: 503–510.

    Article  CAS  PubMed  Google Scholar 

  36. Fu XM, Pan WD, Farragher SM, Wong V, and Cutz E. Neuroepithelial bodies in mammalian lung express functional serotonin type 3 receptor. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 281: L931–L940.

    CAS  PubMed  Google Scholar 

  37. Gebremedhin D, Bonnet P, Greene AS, England SK, Rusch NJ, Lombard JH, and Harder DR. Hypoxia increases the activity of Ca2+-sensitive K+ channels in cat cerebral arterial muscle cell membranes. Pflügers Arch. 1994; 428: 621–630.

    Article  CAS  PubMed  Google Scholar 

  38. Hales CA, Ahluwalia B, and Kazemi H. Strength of pulmonary vascular response to regional alveolar hypoxia. J. Appl. Physiol. 1975; 38: 1083–1087.

    CAS  PubMed  Google Scholar 

  39. Han D, Antunes F, Canali R, Rettori D, and Cadenas E. Voltage-dependent anion channels control the release of superoxide anion from mitochondria to cytosol. J. Biol. Chem. 2002; 278: 5557–5563.

    PubMed  Google Scholar 

  40. Hasunuma K, Rodman D, and McMurtry I. Effects of K+ channel blockers on vascular tone in the perfused rat lung. Ann. Rev. Respir. Dis. 1991; 144: 884–887.

    CAS  Google Scholar 

  41. Henderson LM and Chappell JB. NADPH oxidase of neutrophils. Biochim. Biophys. Acta. 1996; 1273: 87–107.

    PubMed  Google Scholar 

  42. Henry T, Archer SL, Nelson D, Weir EK, and From AH. Postischemic oxygen radical production varies with duration of ischemia. Am. J. Physiol. 1993; 264: H1478–H1484.

    CAS  PubMed  Google Scholar 

  43. Hughes JD and Rubin LJ. Relation between mixed venous oxygen tension and pulmonary vascular tone during normoxic, hyperoxic and hypoxic ventilation in dogs. Am. J. Cardiol. 1984; 54: 1118–1123.

    Article  CAS  PubMed  Google Scholar 

  44. Hulme JT, Coppock EA, Felipe A, Martens JR, and Tamkun MM. Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature. Circ. Res. 1999; 85: 489–497.

    CAS  PubMed  Google Scholar 

  45. Hyslop SJ, Duncan AM, Pitkanen S, and Robinson BH. Assignment of the PSST subunit gene of human mitochondrial complex I to chromosome 19p13. Genomics. 1996; 37: 375–380.

    Article  CAS  PubMed  Google Scholar 

  46. Jensen KS, Micco AJ, Czartolomna J, Latham L, and Voelkel NF. Rapid onset of hypoxic vasoconstriction in isolated lungs. J. Appl. Physiol. 1992; 72: 2018–2023.

    CAS  PubMed  Google Scholar 

  47. Jiang C, and Haddad GG. A direct mechanism for sensing low oxygen levels by central neurons. Proc. Natl. Acad. Sci. USA. 1994; 91: 7198–7201.

    CAS  PubMed  Google Scholar 

  48. Johnson D and Georgieff MK. Pulmonary neuroendocrine cells. Their secretory products and their potential roles in health and chronic lung disease in infancy. Ann. Rev. Respir. Dis. 1989; 140: 1807–1812.

    CAS  Google Scholar 

  49. Jones RD, Hancock JT, and Morice AH. NADPH oxidase: a universal oxygen sensor? Free Radic. Biol. Meet. 2000; 29: 416–424.

    CAS  Google Scholar 

  50. Kashani-Poor N, Zwicker K, Kerscher S, and Brandt U. A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J. Biol. Chem. 2001; 276: 24082–24087.

    Article  CAS  PubMed  Google Scholar 

  51. Kato M and Staub N. Response of small pulmonary arteries to unilobar alveolar hypoxia and hypercapnia. Circ. Res. 1966; 19: 426–440.

    CAS  PubMed  Google Scholar 

  52. Lassegue B, Sorescu D, Szocs K, Yin QQ, Akers M, Zhang Y, Grant SL, Lambeth JD, and Griendling KK. Novel gp91phak homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 2001; 88: 888–894.

    CAS  PubMed  Google Scholar 

  53. Leach RM, Hill HM, Snetkov VA, Robertson TP, and Ward JPT. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J. Physiol. 2001; 536: 211–224.

    Article  CAS  PubMed  Google Scholar 

  54. Leach RM, Robertson TP, Twort CH, and Ward JP. Hypoxic vasoconstriction in rat pulmonary and mesenteric arteries. Am. J. Physiol. 1994; 266: L223–L231.

    CAS  PubMed  Google Scholar 

  55. Leach RM, Sheehan DW, Chacko VP, and Sylvester JT. Energy state, pH, and vasomotor tone during hypoxia in precontracted pulmonary and femoral arteries. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 278: L294–L304.

    CAS  PubMed  Google Scholar 

  56. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, and Epstein CJ.. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking mangenese superoxide dismutase. Nat. Genet. 1995; 11:376–381.

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Zhu H, and Trush MA. Detection of mitochondria-derived reactive oxygen species production by chemilumigenic probes lucigenin and luminol. Biochem. Biophys. Acta. 1999; 1428: 1–12.

    CAS  PubMed  Google Scholar 

  58. Liu P, Hock CE, Nagele R, and Wong PY. Formation of nitric oxide, superoxide, and peroxynitrite in myoardial ischemia-reperfusion injury in rats. Am. J. Physiol. 1997; 272: H2327–H2336.

    CAS  PubMed  Google Scholar 

  59. Liu Q, Sham JSK, Shimoda LA, and Sylvester JT. Hypoxic constriction of porcine distal pulmonary arteries: endothelium and endothelin dependence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L856–L865.

    CAS  PubMed  Google Scholar 

  60. Lloyd TC Jr. PO2-dependent pulmonary vasoconstriction caused by procaine. J. Appl. Physiol. 1966; 21: 1439–1442.

    CAS  PubMed  Google Scholar 

  61. Lloyd TC Jr. Pulmonary vasoconstriction during histotoxic hypoxia. J. Appl. Physiol. 1965; 20: 488–490.

    PubMed  Google Scholar 

  62. Lopez MG, Moro MA, Castillo CF, Artalejo CR, and Garcia AG. Variable, voltage-dependent, blocking effects of nitrendipine, verapamil, diltiazem, cinnarizine and cadmium on adrenomedullary secretion. Br. J. Pharmacol. 1989; 96: 725–731.

    CAS  PubMed  Google Scholar 

  63. Lopez-Barneo J, Benot A, and Urena J., Oxygen sensing and the electrophysiology of arterial chemoreceptor cells. News Physiol Sci. 1993; 8: 191–195.

    CAS  Google Scholar 

  64. López-Barneo J, López-López JR, Ureña J, and González C. Chemotransduction in the carotid body: K+ current modulated by Po2 in type I chemoreceptor cells. Science Wash. DC. 1988; 242: 580–582.

    Google Scholar 

  65. Madden JA, Dawson CA, and Harder DR. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J. Appl. Physiol. 1985; 59: 113–118.

    CAS  PubMed  Google Scholar 

  66. Marshall C, Mamary AJ, Verhoeven AJ, and Marshall BE. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am. J. Respir. Cell Mol. Biol. 1996; 15: 633–644.

    CAS  PubMed  Google Scholar 

  67. Marshall C and Marshall BE. Influence of perfusate PO2 on hypoxic pulmonary vasoconstriction in rats. Circ. Res. 1983; 52: 691–696.

    CAS  PubMed  Google Scholar 

  68. McCormack DG and Paterson NA. Loss of hypoxic pulmonary vasoconstriction in chronic neumonia is not mediated by nitric oxide. Am. J. Physiol. 1993; 265: H1523–H1528.

    CAS  PubMed  Google Scholar 

  69. McMurtry IF. BAY K 8644 potentiates and A23187 inhibits hypoxic vasoconstriction in rat lungs. Am. J. Physiol. 1985; 249: H741–H746.

    CAS  PubMed  Google Scholar 

  70. McMurtry IF, Davidson AB, Reeves JT, and Grover RF. Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ. Res. 1976; 38:99–104.

    CAS  PubMed  Google Scholar 

  71. McMurtry IF, Petrun MD, and Reeves JT. Lungs from chronically hypoxic rats have decreased pressor response to acute hypoxia. Am. J. Physiol. 1978; 235: H104–H109.

    CAS  PubMed  Google Scholar 

  72. Michelakis E, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, and Archer SL. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ. Res. 2002; 90: 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  73. Michelakis E, Rebeyka I, Bateson J, Olley P, Puttagunta L, and Archer S. Voltage-gated potassium channels in human ductus arteriosus. Lancet. 2000; 356: 134–137.

    Article  CAS  PubMed  Google Scholar 

  74. Michelakis ED, Rebeyka I, Wu X, Nsair A, Thebaud B, Hashimoto K, Dyck JR, Haromy A, Harry G, Barr A, and Archer SL. O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ. Res. 2002; 91: 478–486.

    Article  CAS  PubMed  Google Scholar 

  75. Michelakis ED and Weir EK. The pathobiology of pulmonary hypertension. Smooth muscle cells and ion channels. Clin. Chest Med. 2001; 22: 419–432.

    Article  CAS  PubMed  Google Scholar 

  76. Nelson MT and Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 1995; 268: C799–C822.

    CAS  PubMed  Google Scholar 

  77. Nicholls DG. Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int. J. Biochem. Cell Biol. 2002; 34: 1372–1381.

    Article  CAS  PubMed  Google Scholar 

  78. Obeso A, Rocher A, Lopez-Lopez JR, and Gonzalez C. Intracellular Ca2+ deposits and catecholamine secretion by chemoreceptor cells of the rabbit carotid body. Adv. Exp. Med. Biol. 1996; 410: 279–284.

    CAS  PubMed  Google Scholar 

  79. Ohe M, Mimata T, Haneda T, and Takishima T. Time course of pulmonary vasoconstriction with repeated hypoxia and glucose depletion. Respir. Physiol. 1986; 63: 177–186.

    Article  CAS  Google Scholar 

  80. Ohnishi T. Iron-sulfur clusters/semiquinones in complex I. Biochim. Biophys. Acta. 1998; 1364: 186–206.

    CAS  PubMed  Google Scholar 

  81. Oparil S, Chen SJ, Meng QC, Elton TS, Yano M, and Chen YF. Endothelin-A receptor antagonist prevents acute hypoxia-induced pulmonary hypertension in the rat. Am. J. Physiol. 1995; 12: L95–L100.

    Google Scholar 

  82. Paky A, Michael JR, Burke-Wolin TM, Wolin MS, and Gurtner GH. Endogenous production of superoxide by rabbit lungs: effects of hypoxia or metabolic inhibitors. J. Appl. Physiol. 1993; 74: 2868–2874.

    CAS  PubMed  Google Scholar 

  83. Patel AJ and Honore E. Molecular physiology of oxygen-sensitive potassium channels. Eur. Respir. J. 2001; 18: 221–227.

    Article  CAS  PubMed  Google Scholar 

  84. Patel AJ, Lazdunski M, and Honore E. Kv2. 1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO. J. 1997; 16:6615–6625.

    Article  CAS  PubMed  Google Scholar 

  85. Pease RD, Benumof JL, and Trousdale FR. FAO2 and PVO2 interaction on hypoxic pulmonary vasoconstriction. J. Appl. Physiol. 1982; 53: 134–139.

    CAS  PubMed  Google Scholar 

  86. Peers C. Hypoxic suppresion of K+ currents in type I carotid body cells: selective effect on the Ca2+-activated K+ current. Neurosci. Lett. 1990; 119: 253–256.

    Article  CAS  PubMed  Google Scholar 

  87. Peinado VI, Santos S, Ramirez J, Roca J, Rodriguez-Roisin R, and Barbera JA. Response to hypoxia of pulmonary arteries in chronic obstructive pulmonary disease: an in vitro study. Eur. Respir. J. 2002; 20: 332–338.

    Article  CAS  PubMed  Google Scholar 

  88. Perchenet L, Hilfiger L, Mizrahi J, and Clement-Chomienne O. Effects of anorexinogen agents on cloned voltage-gated K+ channel hKv1. 5. J. Pharmacol. Exp. Ther. 2001; 298: 1108–1119.

    CAS  PubMed  Google Scholar 

  89. Pérez-García MT, López-López JR, Riesco AM, Hoppe UC, Marbán E, González C, and Johns DC. Viral gene transfer of dominant-negative Kv4 construct suppresses an O2-sensitive K+ current in chemoreceptor cells. J. Neurosci. 2000; 20: 5689–5695.

    PubMed  Google Scholar 

  90. Peterson DA, Reeve HL, Nelson D, Archer SL, and Weir EK. Triple-bonded unsaturated fatty acids are redox active compounds. Lipids. 2001; 36: 431–433.

    CAS  PubMed  Google Scholar 

  91. Pitkanen S and Robinson BH. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J. Clin. Invest. 1996; 98: 345–351.

    CAS  PubMed  Google Scholar 

  92. Pongs O. Molecular biology of voltage-dependent potassium channels. Physiol. Rev. 1992; 72: S62–S88.

    Google Scholar 

  93. Post JM, Hume JR, Archer SL, and Weir EK. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am. J. Physiol. 1992; 262: C882–C890.

    CAS  PubMed  Google Scholar 

  94. Pozeg Z, Michelakis ED, McMurtry S, Thebaud B, Wu X-C, Dyck JRB, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A, and Archer SL. In vivo gene transfer of the O2-sensitve potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation. 2003; 107: 2037–2044.

    Article  CAS  PubMed  Google Scholar 

  95. Rao KM, Padmanabhan J, Kilby DL, Cohen HJ, Currie MS, and Weinberg JB. Flow cytometric analysis of nitric oxide production in human neutrophils using dichlorofiuorescein diacetate in the presence of a calmodulin inhibitor. J. Leukoc. Biol. 1992; 51: 496–500.

    CAS  PubMed  Google Scholar 

  96. Reeve HL, Archer S, and Weir EK. Ion channels in the pulmonary vasculature. Pulm. Pharmacol. Ther. 1997; 10: 243–252.

    CAS  PubMed  Google Scholar 

  97. Reeve HL, Michelakis E, Nelson DP, Weir EK, and Archer SL. Alterations in a redox oxygen sensing mechanism in chronic hypoxia J. Appl. Physiol. 2001; 90: 2249–2256.

    CAS  PubMed  Google Scholar 

  98. Reeve HL, Tolarova S, Nelson DP, Archer S, and Weir EK. Redox control of oxygen sensing in the rabbit ductus arteriosus. J. Physiol. 2001; 533: 253–261.

    Article  CAS  PubMed  Google Scholar 

  99. Reeve HL, Weir EK, Nelson DP, Peterson DA, and Archer SL. Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue. Exp. Physiol. 1995; 80: 825–834.

    CAS  PubMed  Google Scholar 

  100. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, and Pongs O. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature. 1994; 369: 289–294.

    Article  CAS  PubMed  Google Scholar 

  101. Robinson BH. Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim. Biophys. Acta. 1994; 1364: 271–276.

    Google Scholar 

  102. Rota C, Chignell CF, and Mason RP. Evidence for free radical formation during the oxidation of 2,7-dichlorofluorecein to the fluorescent dye 2,7-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic. Biol. Med. 1999; 27: 873–881.

    Article  CAS  PubMed  Google Scholar 

  103. Rounds S and McMurtry IF. Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs. Circ. Res. 1981; 48: 393–400.

    CAS  PubMed  Google Scholar 

  104. Salameh G, Karamsetty MR, Warburton RR, Klinger JR, Ou LC, and Hill NS. Differences in acute hypoxic pulmonary vasoresponsiveness between rat strains: role of endothelium. J. Appl. Physiol. 1999; 87: 356–62.

    CAS  PubMed  Google Scholar 

  105. Sanchez D, Lopez-Lopez JR, Perez-Garcia MT, Sanz-Alfayate G, Obeso A, Ganfornina MD, and Gonzalez C. Molecular identification of K subunits that contribute to the oxygensensitive K+ current of chemoreceptor cells of the rabbit carotid body. J. Physiol. 2002; 542: 369–382.

    Article  CAS  PubMed  Google Scholar 

  106. Sato K, Morio Y, Morris KG, Rodman DM, and McMurtry IF. Mechanism of hypoxic pulmonary vasoconstriction involves ETA receptor-mediated inhibition of KATP channel. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 278: L434–L442.

    CAS  PubMed  Google Scholar 

  107. Schuler F and Casida JE. The insecticide target in the PSST subunit of complex I. Pest Manag. Sci. 2001; 57: 932–940.

    Article  CAS  PubMed  Google Scholar 

  108. Schuler F, Yano T, Di Bernardo S, Yagi T, Yankovskaya V, Singer TP, and Casida JE. NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron-sulfur cluster N2 to quinone. Proc. Natl. Acad. Sci. USA. 1999; 96: 4149–4153.

    Article  CAS  PubMed  Google Scholar 

  109. Sham JSK. Hypoxic pulmonary vasoconstriction: ups and downs of reactive oxygen species. Circ. Res. 2002; 91: 649–651.

    Article  CAS  PubMed  Google Scholar 

  110. Shapiro BM. The control of oxidant stress at fertilization. Science. 1991; 252: 533–536.

    CAS  PubMed  Google Scholar 

  111. Shirahata M, and Fitzgerald RS. Dependency of hypoxic chemotransduction in cat carotid body on voltage-gated calcium channels. J. Appl. Physiol. 1991; 71: 1062–1069.

    CAS  PubMed  Google Scholar 

  112. Smirnov SV, Beck R, Tammaro P, Ishii T, and Aaronson PI. Electrophysiologically distinct smooth muscle cell subtypes in rat conduit and resistance pulmonary arteries. J. Physiol. 2002; 538: 867–878.

    Article  CAS  PubMed  Google Scholar 

  113. Smirnov SV, Robertson TP, Ward JPT, and Aaronson PI. Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary artery muscle cells. Am. J. Physiol. 1994; 266: H365–H370.

    CAS  PubMed  Google Scholar 

  114. St-Pierre J, Buckingham J A, Roebuck S J, and Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 2002; 277: 44784–44790.

    CAS  PubMed  Google Scholar 

  115. Stanbrook HS, and McMurtry IF. Inhibition of glycolysis potentiates hypoxic vasoconstriction in rat lungs. J. Appl. Physiol. 1983; 55: 1467–1473.

    CAS  PubMed  Google Scholar 

  116. Sweeney M and Yuan JX-J. Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels. Respir. Res. 2000; 1: 40–48.

    Article  CAS  PubMed  Google Scholar 

  117. Sylvester JT, Harabin AL, Peake MD, and Frank RS. Vasodilator and constrictor responses to hypoxia in isolated pig lungs. J. Appl. Physiol. 1980; 49: 820–825.

    CAS  PubMed  Google Scholar 

  118. Takeshige K and Minakami S. NADH and NADH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem. J. 1979; 15: 129–135.

    Google Scholar 

  119. Thannickal VJ and Fanburg BL. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 279: L1005–L1028.

    CAS  PubMed  Google Scholar 

  120. Tristani-Firouzi M, Reeve HL, Tolarova S, Weir EK, and Archer SL. Oxygen-induced constriction of the rabbit ductus arteriosus occurs via inhibition of a 4-aminopyridine-sensitive potassium channel. J. Clin. Invest. 1996; 98: 1959–1965.

    CAS  PubMed  Google Scholar 

  121. Trumpower BL. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem. 1990; 265: 11409–11412.

    CAS  PubMed  Google Scholar 

  122. Vadula MS, Kleinman JG, and Madden JA. Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am. J. Physiol. 1993; 265: L591–L597.

    CAS  PubMed  Google Scholar 

  123. Ward JPT and Aaronson PI. Mechanisms of hypoxic pulmonary vasoconstriction: can anyone be right? Respir. Physiol. 1999; 115: 261–271.

    Article  CAS  PubMed  Google Scholar 

  124. Waypa GB, Chandel NS, and Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ. Res. 2001; 88: 1259–1266.

    CAS  PubMed  Google Scholar 

  125. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, and Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ. Res. 2002; 91: 719–726.

    Article  CAS  PubMed  Google Scholar 

  126. Weir EK and Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 1995; 9: 183–189.

    CAS  PubMed  Google Scholar 

  127. Weksler B, Ng B, Lenert JT, and Burt ME. Isolated single lung perfusion in the rat: an experimental model. J. Appl. Physiol. 1993; 74: 2736–2739.

    CAS  PubMed  Google Scholar 

  128. Wenger RH, Marti HH, Schuerer-Maly CC, Kvietikova I, Bauer C, Gassmann M, Maly FE. Hypoxic induction of gene expression in chronic granulomatous disease-derived B-cell lines: oxygen sensing is independent of the cytochrome b558-containing nicotinamide adenine dinucleotide phosphate oxidase. Blood. 1996; 87: 756–761.

    CAS  PubMed  Google Scholar 

  129. Wiener CM, Dunn A, and Sylvester JT. ATP-dependent K+ channels modulate vasoconstrictor responses to severe hypoxia in isolated ferret lungs. J. Clin. Invest. 1991; 88: 500–504.

    CAS  PubMed  Google Scholar 

  130. Youngson C, Nurse C, Yeger H, and Cutz E. Oxygensensing in airway chemoreceptors. Nature. 1993; 365: 153–155.

    Article  CAS  PubMed  Google Scholar 

  131. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JSK, Wiener CM, Sylvester JT, and Semenza GL. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor J. Clin. Invest. 1999; 103: 691–696.

    CAS  PubMed  Google Scholar 

  132. Yuan X-J. Voltage gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary artery myocytes. Circ. Res. 1995; 77: 370–378.

    CAS  PubMed  Google Scholar 

  133. Yuan X-J, Aldinger AM, Juhaszova M, Wang J, Conte JV Jr, Gaine SP, Orens JB, and Rubin LJ. Dysfunctional voltage-gated potassium channels in the pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation. 1998; 98: 1400–1406.

    CAS  PubMed  Google Scholar 

  134. Yuan X-J, Goldman WF, Tod ML, Rubin LJ, and Blaustein MP. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am. J. Physiol. 1993; 264: L116–L123.

    CAS  PubMed  Google Scholar 

  135. Yuan X-J, Wang J, Juhaszova M, Golovina VA, and Rubin LJ. Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. Am. J. Physiol. 1998; 274: L621–L635.

    CAS  PubMed  Google Scholar 

  136. Zheng M, Aslund F, and Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science. 1998; 279: 1718–1721.

    Article  CAS  PubMed  Google Scholar 

  137. Zweier JL, Flaherty JT, and Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc. Natl. Acad. Sci. USA. 1987; 84: 1404–1407.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Moudgil, R., Michelakis, E.D., Archer, S.L. (2004). Regulation of O2-Sensitive K+ Channels by a Mitochondrial Redox Sensor: Implications for Hypoxic Pulmonary Vasoconstriction. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics