Skip to main content

Critical Role of Ca+ Sensitization in Acute Hypoxic Pulmonary Vasoconstriction

  • Chapter
  • 119 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

Summary

Converging lines of evidence indicate that HPV involves an increase in Ca2+ sensitivity. Future work that addresses the mechanisms that underlie hypoxia-induced Ca2+ sensitization in the pulmonary circulation are therefore a priority in furthering our understanding of this vital physiological response. Such studies would include the determination of i) the precise role of the endothelium in supporting hypoxia-induced Ca2+ sensitization in pulmonary arteries, ii) the identity and mechanism of action of the putative EDCF involved in HPV and iii) the roles of PKC, PTK, p38 MAP kinase and Rho-kinase.

Whatever the relative contributions of the latter enzymatic pathways may be in HPV, it is probable that inhibition of MLCP is the pivotal step that results in an increase in MLC20 phosphorylation and contraction. The emergence of Rho-kinase as a key regulator of MLCP and vascular smooth muscle tone, coupled with the persuasive evidence that Rho-kinase activation is involved in HPV, makes this pathway a primary target for further investigation. It is tempting to speculate that Rho-kinase may be a link between Ca2+ sensitization during acute hypoxia and the pathogenesis of chronic hypoxia-associated pulmonary hypertension (see Chapter 24), especially since Rho-kinase antagonists appear to offer much promise for the treatment of a variety of systemic vascular diseases (45, 52).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif AA. Cross talk between cyclic nucleotides and polyphosphoinositide hydrolysis, protein kinases, and contraction in smooth muscle. Exp. Biol. Med. 2001; 226: 153–163.

    CAS  Google Scholar 

  2. Barman SA. Effect of protein kinase C inhibition on hypoxic pulmonary vasoconstriction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L888–L895.

    CAS  PubMed  Google Scholar 

  3. Davies SP, Reddy H, Caivano M, and Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 2000; 351: 95–105.

    Article  CAS  PubMed  Google Scholar 

  4. DeFeo TT and Morgan KG. Calcium-force relationships as detected with aequorin in two different vascular smooth muscles of the ferret. J. Physiol. 1985; 369: 269–282.

    Google Scholar 

  5. Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA, and Messing RO. Protein kinase C isozymes and the regulation of diverse cell responses. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 279: L429–438.

    CAS  PubMed  Google Scholar 

  6. Dipp M, Nye PCG, and Evans AM. The vasoconstrictor released by hypoxia into the rat pulmonary circulation acts through a Rho-associated kinase pathway and is removed during alveolar normoxia. J. Physiol. 2001; 531: 96.

    Google Scholar 

  7. Eto M, Ohmori T, Suzuki M, Furuya K, and Morita F. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J. Biochem. 1995; 118: 1104–1107.

    CAS  PubMed  Google Scholar 

  8. Gaine SP, Hales MA, and Flavahan NA. Hypoxic pulmonary endothelial cells release a diffusible contractile factor distinct from endothelin. Am. J. Physiol. 1998; 274: L657–L664.

    CAS  PubMed  Google Scholar 

  9. Gong MC, Fujihara H, Somlyo AV, and Somlyo AP. Translocation of RhoA associated with Ca2+ sensitization of smooth muscle. J Biol. Chem. 1997; 272: 10704–10709.

    CAS  PubMed  Google Scholar 

  10. Hardin CD, Wiseman RW, and Paul RJ. “Metabolism and energetics of vascular smooth muscle.” In Physiology and Pathophysiology of the Heart, 4th Edition, Sperelakis N, ed. Norwell, MA: Kluwer Academic Publishers, 2001, pp. 571–595.

    Google Scholar 

  11. Hartshorne DJ, Ito M, and Erdodi F. Myosin light chain phosphatase: subunit composition, interactions and regulation. J. Muscle Res. Cell. Motil. 1998; 19: 325–341.

    Article  CAS  PubMed  Google Scholar 

  12. Hers I, Tavare JM, and Denton RM. The protein kinase C inhibitors bisindolylmaleimide I (GF 109203x) and IX (Ro 31-8220) are potent inhibitors of glycogen synthase kinase-3 activity. FEBS Lett. 1999; 460: 433–436.

    Article  CAS  PubMed  Google Scholar 

  13. Hubbard SR and Till JH. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 2000; 69: 373–398.

    Article  CAS  PubMed  Google Scholar 

  14. Iizuka K, Yoshii A, Samizo K, Tsukagoshi H, Ishizuka T, Dobashi K, Nakazawa T, and Mori M. A μαϕορ role for the Rho-associated coiled coil forming protein kinase in G-protein-mediated Ca2+ sensitization through inhibition of myosin phosphatase in rabbit trachea. B.r J. Pharmacol. 1999; 128: 925–933.

    CAS  Google Scholar 

  15. Jensen PE, Gong MC, Somlyo AV, and Somlyo AP. Separate upstream and convergent downstream pathways of G-protein-and phorbol ester-mediated Ca2+ sensitization of myosin light chain phosphorylation in smooth muscle. Biochem. J. 1996; 318:469–475.

    CAS  PubMed  Google Scholar 

  16. Jin N, Packer CS, and Rhoades RA. Pulmonary arterial hypoxic contraction: signal transduction. Am. J. Physiol. 1992; 263: L73–L78.

    CAS  PubMed  Google Scholar 

  17. Karamsetty MR, Klinger JR, and Hill NS. Evidence for the role of p38 MAP kinase in hypoxia-induced pulmonary vasoconstriction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 283: L859–L866.

    CAS  PubMed  Google Scholar 

  18. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, and Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996; 273: 245–248.

    CAS  PubMed  Google Scholar 

  19. Kitazawa T, Eto M, Woodsome TP, and Brautigan DL. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J. Biol. Chem. 2000; 275: 9897–9900.

    Article  CAS  PubMed  Google Scholar 

  20. Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, and Nakano T. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett. 2000: 475: 197–200.

    Article  CAS  PubMed  Google Scholar 

  21. Leach RM, Hill HM, Snetkov VA, Robertson TP, and Ward JPT. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J Physiol. 2001: 536: 211–224.

    Article  CAS  PubMed  Google Scholar 

  22. Leach RM, Robertson TP, Twort CH, and Ward JP. Hypoxic vasoconstriction in rat pulmonary and mesenteric arteries. Am. J. Physiol. 1994; 266: L223–L231.

    CAS  PubMed  Google Scholar 

  23. Leung T, Manser E, Tan L, and Lim L. A novel serine/threonine kinase binding the Rasrelated RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 1995; 270: 29051–29054.

    CAS  PubMed  Google Scholar 

  24. Littler CM, Morris KG Jr, Fagan KA, McMurtry IF, Messing RO, and Dempsey EC. Protein kinase C-ε-null mice have decreased hypoxic pulmonary vasoconstriction. Am. J. Physiol. Heart Circ. Physiol. 2003; 284: H1321–H1331.

    CAS  PubMed  Google Scholar 

  25. Morgan JP and Morgan KG. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J. Physiol. 1984; 351: 155–167.

    CAS  PubMed  Google Scholar 

  26. Morrison DL, Sanghera JS, Stewart J, Sutherland C, Walsh MP, and Pelech SL. Phosphorylation and activation of smooth muscle myosin light chain kinase by MAP kinase and cyclin-dependent kinase-1. Biochem. Cell Biol. 1996; 74: 549–557.

    CAS  PubMed  Google Scholar 

  27. Nakao F, Kobayashi S, Mogami K, Mizukami Y, Shirao S, Miwa S, Todoroki-Ikeda N, Ito M, and Matsuzaki M. Involvement of Src family protein tyrosine kinases in Ca2+ sensitization of coronary artery contraction mediated by a sphingosylphosphorylcholine-Rho-kinase pathway. Circ. Res. 2002; 91:953–960.

    Article  CAS  PubMed  Google Scholar 

  28. Niiro N, Koga Y, and Ikebe M. Agonist-induced changes in the phosphorylation of the myosin-binding subunit of myosin light chain phosphatase and CPI17, two regulatory factors of myosin light chain phosphatase, in smooth muscle. Biochem. J. 2003; 369: 117–128.

    Article  CAS  PubMed  Google Scholar 

  29. Nishimura J, Khalil RA, and van Breemen C. Agonist-induced vascular tone. Hypertension. 1989; 13: 835–844.

    CAS  PubMed  Google Scholar 

  30. Nixon JS, Wilkinson SE, Davis PD, Sedgwick AD, Wadsworth J, and Westmacott D. Modulation of cellular processes by H7, a non-selective inhibitor of protein kinases. Agents Actions. 1991; 32: 188–193.

    Article  CAS  PubMed  Google Scholar 

  31. Ogura T, Imanishi S, and Shibamoto T. Activation of background membrane conductance by the tyrosine kinase inhibitor tyrphostin A23 and its inactive analog tyrphostin A1 in guinea pig ventricular myocytes. Jpn. J. Pharmacol. 2001; 87: 235–239.

    Article  CAS  PubMed  Google Scholar 

  32. Orton EC, Raffestin B, and McMurtry IF. Protein kinase C influences rat pulmonary vascular reactivity. Am. Rev. Respir. Dis. 1990; 141: 654–658.

    CAS  PubMed  Google Scholar 

  33. Robertson TP, Aaronson PI, and Ward JPT. Ca2+ sensitization during sustained hypoxic vasoconstriction is endothelium-dependent. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003; L1162–L1126.

    Google Scholar 

  34. Robertson TP, Aaronson PI, and Ward JPT. Hypoxic vasoconstriction and intracellular Ca2+ in pulmonary arteries: evidence for PKC-independent Ca2+ sensitization. Am. J. Physiol. 1995; 268: H301–H307.

    CAS  PubMed  Google Scholar 

  35. Robertson TP, Clapham J, and Ward JPT. A vasoactive substance with a molecular wt less-than-3,000 released during hypoxic perfusion of isolated rat lungs, constricts isolated rat pulmonary but not mesenteric resistance arteries. Br. J. Pharmacol. 1994; 111: 277.

    Google Scholar 

  36. Robertson TP, Dipp M, Ward JPT, Aaronson PI, and Evans AM. Inhibition of sustained hypoxic vasoconstriction by Y-27632 in isolated intrapulmonary arteries and perfused lung of the rat. Br. J. Pharmacol. 2000; 131: 5–9.

    Article  CAS  PubMed  Google Scholar 

  37. Robertson TP, Hague D, Aaronson PI, and Ward JPT. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J. Physiol. 2000; 525: 669–680.

    Article  CAS  PubMed  Google Scholar 

  38. Robertson TP and Lewis SJ. Hypoxic pulmonary vasoconstriction in conscious rats: lack of effects of endothelin-1 receptor blockade. J. Physiol. 2002; 547: PC85.

    Google Scholar 

  39. Robertson TP, Ward JPT, and Aaronson PI. Hypoxia induces the release of a pulmonary-selective, Ca2+-sensitising, vasoconstrictor from the perfused rat lung. Cardiovasc. Res. 2001; 50: 145–150.

    Article  CAS  PubMed  Google Scholar 

  40. Robertson TP and Ward JPT. The effect of acute-hypoxia on intracellular calcium and tension in isolated small pulmonary-arteries of the rat. J. Physiol. 1993; 467: 55.

    Google Scholar 

  41. Sasaki M, Hattori Y, Tomita F, Moriishi K, Kanno M, Kohya T, Oguma K, and Kitabatake A. Tyrosine phosphorylation as a convergent pathway of heterotrimeric G protein-and Rho protein-mediated Ca2+ sensitization of smooth muscle of rabbit mesenteric artery. Br. J. Pharmacol. 1998; 125: 1651–1660.

    Article  CAS  PubMed  Google Scholar 

  42. Savineau JP, Robertson TP, Delafeunte PG, Twort CHC, Marthan R, and Ward JPT. Effect of protein kinase C stimulation on tension and calcium concentration in the rat pulmonary artery — modulation by forskolin. Br. J. Pharmacol. 1992; 107: 390.

    Google Scholar 

  43. Scott DA, Grotyohann LW, Cheung JY, and Scaduto RC Jr. Ratiometric methodology for NAD(P)H measurement in the perfused rat heart using surface fluorescence. Am. J. Physiol. 1994; 267: H636–H644.

    CAS  PubMed  Google Scholar 

  44. Senba S, Eto M, and Yazawa M. Identification of trimeric myosin phosphatase (PP1M) as a target for a novel PKC-potentiated protein phosphatase-1 inhibitory protein (CPI17) in porcine aorta smooth muscle. J. Biochem. 1999; 125: 354–362.

    CAS  PubMed  Google Scholar 

  45. Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J. Cardiovasc. Pharmacol. 2002; 39: 319–327.

    Article  CAS  PubMed  Google Scholar 

  46. Shin H-M, Je H-D, Gallant C, Tao TC, Hartshorne DJ, Ito M, and Morgan KG. Differential association and localization of myosin phosphatase subunits during agonist-induced signal transduction in smooth muscle. Circ. Res. 2002; 90: 546–553.

    Article  CAS  PubMed  Google Scholar 

  47. Smirnov SV and Aaronson PI. Inhibition of vascular smooth muscle cell K+ currents by tyrosine kinase inhibitors genistein and ST 638. Circ. Res. 1995; 76: 310–316.

    CAS  PubMed  Google Scholar 

  48. Somlyo AP, Kitazawa T, Himpens B, Matthijs G, Horiuti K, Kobayashi S, Goldman YE, and Somlyo AV. Modulation of Ca2+-sensitivity and of the time course of contraction in smooth muscle: a major role for protein phosphatases? Advances in Protein Phosphorylation. 1989; 5: 181–195.

    CAS  Google Scholar 

  49. Somlyo AP and Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994; 372: 231–236.

    Article  CAS  PubMed  Google Scholar 

  50. Somlyo AP and Somlyo AV. Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 2000; 522: 177–185.

    Article  CAS  PubMed  Google Scholar 

  51. Steusloff A, Paul E, Semenchuk LA, Di Salvo J, and Pfitzer G. Modulation of Ca2+ sensitivity in smooth muscle by genistein and protein tyrosine phosphorylation. Arch. Biochem. Biophys. 1995; 320: 236–242.

    Article  CAS  PubMed  Google Scholar 

  52. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, and Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997; 389: 990–994.

    Article  CAS  PubMed  Google Scholar 

  53. Uzun O, Demiryurek AT, and Kanzik I. The role of tyrosine kinase in hypoxic constriction of sheep pulmonary artery rings. Eur. J. Pharmacol. 1998; 358: 41–47.

    Article  CAS  PubMed  Google Scholar 

  54. Von Euler US and Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand. 1946; 12: 301–320.

    Google Scholar 

  55. Wang Z, Jin N, Ganguli S, Swartz DR, Li L, and Rhoades RA. Rho-kinase activation is involved in hypoxia-induced pulmonary vasoconstriction. Am. J. Respir. Cell Mol. Biol. 2001; 25: 628–635.

    CAS  PubMed  Google Scholar 

  56. Ward JPT, Hague D, and Aaronson PI. Effect of protein tyrosine kinase inhibition on hypoxic pulmonary vasoconstriction. Am. J. Respir. Crit. Care Med. 1999; 159: A570.

    Google Scholar 

  57. Weissmann N, Voswinckel R, Hardebusch T, Rosseau S, Ghofrani HA, Schermuly R, Seeger W, and Grimminger F. Evidence for a role of protein kinase C in hypoxic pulmonary vasoconstriction. Am. J. Physiol. 1999; 276: L90–L95.

    CAS  PubMed  Google Scholar 

  58. Welling KL, Sander M, Ravn JB, Larsen B, Abildgaard U, and Amtorp O. Effect of alveolar hypoxia on segmental pulmonary vascular resistance and lung fluid balance in dogs. Acta Physiol. Scand. 1997: 161: 177–186.

    Article  CAS  PubMed  Google Scholar 

  59. Wiener CM and Sylvester JT. Effects of glucose on hypoxic vasoconstriction in isolated ferret lungs. J Appl Physiol. 1991; 70: 439–446.

    CAS  PubMed  Google Scholar 

  60. Wilson HL, Dipp M, Thomas JM, Lad C, Galione A, and Evans AM. ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor. A primary role for cyclic ADP-ribose in hypoxic pulmonary vasoconstriction. J. Biol. Chem. 2001; 276: 11180–11188.

    CAS  PubMed  Google Scholar 

  61. Zhao Y, Packer CS, and Rhoades RA. The vein utilizes different sources of energy than the artery during pulmonary hypoxic vasoconstriction. Exp. Lung Res. 1996; 22: 51–63.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Robertson, T.P., McMurtry, I.F. (2004). Critical Role of Ca+ Sensitization in Acute Hypoxic Pulmonary Vasoconstriction. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics