Skip to main content

Hypoxia-Mediated Regulation of Ca2+ Transients in Pulmonary Artery Smooth Muscle Cells

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

  • 118 Accesses

Conclusion

Both acute and chronic hypoxia alter resting [Ca2+]i value and Ca2+ transients in PASMCs. These alterations are related to hypoxia-mediated effects on various pathways implicated in PASMC Ca2+ homeostasis: voltage-dependent and-independent Ca2+ influx, IP3R5Ca2+ re-uptake, etc. These alterations also play a role in both structural and reactivity changes of the pulmonary circulation in the course of the development of PAHT, as well as in its potential reversal upon normal air breathing. Further studies are therefore required to provide a comprehensive description of the variety of hypoxia-induced effects on calcium signaling in PASMCs, and to identify the common mechanism(s) leading to these various effects in order to define new molecular therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anger M, Lompre A-M, Vallot O, Marotte F, Rappaport L, and Samuel J-L. Cellular distribution of Ca2+ pumps and Ca2+ release channels in rat cardiac hypertrophy induced by aortic stenosis. Circulation. 1998; 98: 2477–2486.

    CAS  PubMed  Google Scholar 

  2. Aguirre JI, Morrell NW, Long L, Clift P, Upton PD, Polak JM, and Wilkins MR. Vascular remodeling and ET-1 expression in rat strains with different responses to chronic hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 278: L981–L987.

    CAS  PubMed  Google Scholar 

  3. Barnes PJ and Liu SF. Regulation of pulmonary vascular tone. Pharmacol. Rev. 1995; 47: 87–131.

    CAS  PubMed  Google Scholar 

  4. Belouchi NE, Roux E, Savineau J-P, and Marthan R. Effect of chronic hypoxia on calcium signalling in airway smooth muscle cells. Eur. Respir. J. 1999; 14: 74–79.

    Article  CAS  PubMed  Google Scholar 

  5. Bialecki RA, Fisher CS, Murdoch WW, Barthlow HG, Stow RB, Mallamaci M, and Rumsey W. Hypoxic exposure time dependently modulates endothelin-induced contraction of pulmonary artery smooth muscle. Am. J. Physiol Lung Cell. Mol. Physiol. 1998; 274: L552–L559.

    CAS  Google Scholar 

  6. Berridge MJ. Elementary and global aspects of calcium signalling. J. Physiol. 1997; 499: 291–306.

    CAS  PubMed  Google Scholar 

  7. Berridge MJ, Lipp P, and Bootman MD. The versatility and universality ofcalcium signaling. Nat. Rev. Mol. Cell. Biol. 2000; 1: 11–21

    Article  CAS  PubMed  Google Scholar 

  8. Bonnet S, Belus A, Hyvelin J-M, Roux E, Marthan R, and Savineau J-P. Effect of chronic hypoxia on agonist-induced tone and calcium signaling in rat pulmonary artery. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 281: L193–L201.

    CAS  PubMed  Google Scholar 

  9. Bonnet P, Bonnet S, Dubuis E, Vandier C, Savineau J-P. Reoxygenation enhanced iberiotoxin-sensitive current in chronic hypoxic rat pulmonary artery smooth muscle cells. Circulation. 2001; 104(17, suppl.2): 403.

    Google Scholar 

  10. Bonnet S, Dubuis E, Vandier C, Marthan R, and Savineau J-P. Reversal of chronic hypoxia-induced alterations in pulmonary artery smooth muscle electromechanical coupling upon air breathing. Cardiovasc. Res. 2002; 53: 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  11. Bonnet S, Hyvelin J-M, Bonnet P, Marthan R, and Savineau J-P. Chronic hypoxia-induced spontaneous and rhythmical contractions in the rat main pulmonary artery. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 281: L183–L192.

    CAS  PubMed  Google Scholar 

  12. Chassagne C, Eddahibi S, Adamy C, Rideau D, Marotte F, Dubois-Randé JL, Adnot S, Samuel JL, and Teiger E. Modulation of angiotensin II receptor expression during development and regression of hypoxic pulmonary hypertension. Am. J. Respir. Cell. Mol. Biol. 2000; 22: 323–332.

    CAS  PubMed  Google Scholar 

  13. Cornfield DM, Stevens T, McMurtry IF, Abman SH, and Rodman DM. Acute hypoxia increases cytosolic calcium in fetal pulmonary artery smooth muscle cells. Am. J. Physiol. 1993; 265: L53–L56.

    CAS  PubMed  Google Scholar 

  14. Elton TS, Oparil S, Taylor GR, Hicks PH, Yang RH, Jin H, and Chen YF. Normobaric hypoxia stimulates endothelin-1 gene expression in the rat. Am. J. Physiol. 1992; 263: R1260–R1264.

    CAS  PubMed  Google Scholar 

  15. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP, and Stewart DJ. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 1993; 328: 1732–1739.

    Article  CAS  PubMed  Google Scholar 

  16. Gelband GH and Gelband H. Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels. Circulation. 1997; 96: 3647–3654.

    CAS  PubMed  Google Scholar 

  17. Gonzalez De La Fuente P, Savineau JP, and Marthan R. Control of pulmonary vascular smooth muscle tone by sarcoplasmic reticulum Ca]2+ pump blockers: thapsigargin and cyclopiazonic acid. Pflügers Arch. 1995; 429: 617–

    Article  CAS  PubMed  Google Scholar 

  18. Guibert C, Marthan R, and Savineau JP. Angiotensin II-induced Ca2+-oscillations in vascular myocytes from the rat pulmonary artery. Am. J. Physiol. 1996, 270: L637–L642.

    CAS  PubMed  Google Scholar 

  19. Guibert C, Marthan R, and Savineau JP. Oscillatory Cl current induced by angiotensin II in rat pulmonary arterial myocytes: Ca2+ dependence and physiological implication. Cell Calcium. 1997; 21: 421–429.

    Article  CAS  PubMed  Google Scholar 

  20. Guibert C, Pacaud P, Loirand G, Marthan R, and Savineau JP. Effect of extracellular ATP on cytosolic Ca2+ concentration in rat pulmonary artery myocytes. Am. J. Physiol. 1996; 271: L450–L458, 1996.

    CAS  PubMed  Google Scholar 

  21. Hagar RE, Burgstahler AD, Nathanson MH, and Ehrlich BE. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature. 1998; 396: 81–84.

    Article  CAS  PubMed  Google Scholar 

  22. Hamada, H, Damron DS, Hong SJ, Van Wagoner DR, and Murray PA. Phenylephrine-induced Ca2+-oscillations in canine pulmonary artery smooth muscle cells. Circ. Res. 1997; 81: 812–823.

    CAS  PubMed  Google Scholar 

  23. Harder DR, Madden JA, and Dawson C. Hypoxic induction of Ca2+-dependent action potentials in small pulmonary arteries of the cat. J. Appl. Physiol. 1985; 59: 1389–1393.

    CAS  PubMed  Google Scholar 

  24. Hervé P. Increased plasma serotonin in primary pulmonary hypertension. Am. J. Med. 1995; 99: 249–254.

    Article  PubMed  Google Scholar 

  25. Hyvelin J-M, Guibert C, Marthan R, and Savineau J-P. Cellular mechanisms and role of endothelin-1-induced calcium oscillations in pulmonary arterial myocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 1998; 275: L269–L282.

    CAS  Google Scholar 

  26. Iino M. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J. Gen. Physiol. 1990; 95: 1103–1122.

    Article  CAS  PubMed  Google Scholar 

  27. Kang TM, Park MK, and Uhm D-Y. Characterization of hypoxia-induced [Ca2+] rise in rabbit pulmonary arterial smooth muscle cells. Life Sci. 2002; 70: 2321–2333.

    CAS  PubMed  Google Scholar 

  28. Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano KI, Harada KI, Miyamoto S, Nakazawa H, Won K-J, and Sato K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev. 1997; 49: 157–230.

    CAS  PubMed  Google Scholar 

  29. Launay JM, Hervé P, Peoc’h C, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, and Maroteaux L. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nature Med. 2002; 8: 1129–1135.

    CAS  PubMed  Google Scholar 

  30. Li H, Elton TS, Chen YF, and Oparil S. Increased endothelin receptor gene expression in hypoxic rat lung. Am. J. Physiol. 1994: 266: L553–L560.

    CAS  PubMed  Google Scholar 

  31. Missiaen L, Parys JB, Weidema AF, Sipma H, Vanlingen S, De Smet P, Callewaert, G, and De Smedt H. The bell-shaped Ca2+ dependence of the inositol 1,4,5-trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin. J. Biol. Chem.> 1999: 274: 13748–13

    Article  CAS  PubMed  Google Scholar 

  32. Morrel NW, Atochina EN, Morris KG, Danilov SM, and Stenmark KR. Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. J. Clin. Invest. 1995; 96: 1823–1833.

    Google Scholar 

  33. Nong Z, Stassen JM, Moons L, Collen D, and Janssens S. Inhibition of tissue angiotensin-converting enzyme with quinapril reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling. Circulation. 1996; 94: 1941–1947.

    CAS  PubMed  Google Scholar 

  34. Olschewski A, Hong Z, Nelson DP, and Weir EK. Graded response of K+ current, membrane potential, and [Ca2+]i to hypoxia in pulmonary arterial smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002: 283: L1143–L1150.

    CAS  PubMed  Google Scholar 

  35. Osipenko ON, Alexander D, MacLean MR, and Gurney AM. Influence of chronic hypoxia on the contributions of non-inactivating and delayed rectifier K currents to the resting potential and tone of rat pulmonary artery smooth muscle. Br. J. Pharmacol. 1998: 124: 1335–1337.

    Article  CAS  PubMed  Google Scholar 

  36. Patel S, Joseph SK, Thomas AP. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 1999: 25: 247–264.

    Article  CAS  PubMed  Google Scholar 

  37. Post JM, Gelband CH, and Hume JR. [Ca2+]i inhibition of K+ channels in canine pulmonary artery. Novel mechanism for hypoxia-induced membrane depolarization. Circ. Res. 1995: 77: 131–139.

    CAS  PubMed  Google Scholar 

  38. Ramos-Franco J, Fill M, and Mignery GA. Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. Biophys. J. 1998: 75: 834–839.

    CAS  PubMed  Google Scholar 

  39. Robertson TP, Aaronson PI, and Ward JPT. Hypoxic vasoconstriction and intracellular Ca2+ in pulmonary arteries: evidence for PKC-independent Ca2+ sensitization. Am. J. Physiol. 1995: 268: H301–H307.

    CAS  PubMed  Google Scholar 

  40. Robertson TP, Hague D, Aaronson PI, and Ward JPT. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J. Physiol. 2000: 525: 669–680.

    Article  CAS  PubMed  Google Scholar 

  41. Salter KJ and Kozlowski RZ. Endothelin receptor coupling to potassium and chloride channels in isolated rat pulmonary arterial myocytes. J. Pharmacol. Exp. Ther. 1996: 279: 1053–1062.

    CAS  PubMed  Google Scholar 

  42. Salveterra CG and Goldman WF. Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am. J. Physiol. 1993: 264: L323–L328.

    Google Scholar 

  43. Savineau J-P, and Marthan R. Modulation of the calcium sensitivity of the smooth muscle contractile apparatus: molecular mechanisms, pharmacological and pathophysiological implications. Fundam. Clin. Pharmacol. 1997: 11: 289–299.

    CAS  PubMed  Google Scholar 

  44. Shimoda LA, Sylvester JT, and Sham JSK. Mobilization of intracellular Ca2+ by endothelin-1 in rat intrapulmonary arterial smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000: 278: L157–L164.

    CAS  PubMed  Google Scholar 

  45. Shimoda LA, Sham JSK, Shimoda TH, and Sylvester JT. L-type Ca2+ channels, resting [Ca2+]i, and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000: 279: L884–L894.

    CAS  PubMed  Google Scholar 

  46. Somlyo AP and Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994: 372: 231–236.

    Article  CAS  PubMed  Google Scholar 

  47. Trower EC, Hagar RE, and Ehrlich BE. Regulation of Ins(1,4,5)P3 receptor isoforms by endogenous modulators. Trends Pharmacol. Sci. 2001: 11: 580–586.

    Google Scholar 

  48. Urena J, Franco-Obregon A, and Lopez-Barneo J. Contrasting effects of hypoxia on cytosolic Ca2+ spikes in conduit and resistance myocytes of the rabbit pulmonary artery. J. Physiol. 1996: 496: 103–109.

    CAS  PubMed  Google Scholar 

  49. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, and Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ. Res. 2002: 91: 719–726.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan X-J. Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circ. Res. 1995: 77: 370–378.

    CAS  PubMed  Google Scholar 

  51. Zhao L, al-Tubuly R, Sebkhi A, Owji AA, Nunez DJ, and Wilkins MR. Angiotensin II receptor expression and inhibition in the chronically hypoxic rat lung. Br. J. Pharmacol. 1996: 119: 1217–1222.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Savineau, JP., Bonnet, S., Marthan, R. (2004). Hypoxia-Mediated Regulation of Ca2+ Transients in Pulmonary Artery Smooth Muscle Cells. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics