Skip to main content

Strain Differences of Hypoxia-Induced Pulmonary Hypertension

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

  • 117 Accesses

Conclusion

Differences in the severity of hypoxia-induced pulmonary hypertension between species and strains have long been known, based on the work of high altitude physiologists on species adapted to high altitude. The mechanisms responsible for these differences are of interest not only to physiologists, but also to clinicians, because understanding them could lead to valuable insights into the regulation of vascular tone as well as to potential therapies for pulmonary hypertension. One of the most studied models has been the Madison and Hilltop strains of Sprague Dawley rat that have markedly different cardiopulmonary responses to both acute and chronic hypoxia. These differences are heritable and associated with differences in vascular reactivity. Notably, the strains exhibit a dissociation between the intensities of acute and chronic hypoxic pulmonary hypertension. The Madison rats have a more intense acute vasoconstrictor response than the Hilltops, but then promptly blunt the response so that the severity of chronic hypoxic pulmonary hypertension is considerably less than in the Hilltops that fail to blunt. The biochemical/cellular mechanisms underlying this interesting phenomenon have not been elucidated. Although the strains also have differing polycythemic responses that parallel the cardiopulmonary differences, these hematologic differences do not appear to be contributing to the cardiopulmonary differences. Pulmonary artery rings isolated from the 2 strains retain the differences in reactivity to acute hypoxic exposure, and stripping the endothelium eliminates the difference, suggesting that an endothelium-derived mediator is at least partly responsible for the differences. Endothelin 1 appears to contribute to strain differences in some cases, such as those observed between the Wistar-Kyoto and Fisher 344 rat strains, but not in the Madison and Hilltop rats. There is evidence for EDHF release in pulmonary arteries isolated from normoxic Madisons but not Hilltops. However, the reasons for the enhanced susceptibility to chronic hypoxia remain unclear. Genetic approaches including cross-breeding and gene array experiments may yield additional insights, but as yet, the fundamental mechanisms responsible for enhancement of cardio- pulmonary responses to hypoxia remain largely unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre JI, Morrell NW, Long L, Clift P, Upton PD, Polak JM, and Wilkins MR. Vascular remodeling and ET-1 expression in rat strains with different responses to chronic hypoxia. Am. J. Physiol. 2000; 278:L981–L987.

    CAS  Google Scholar 

  2. Anand IS, Harris E, Ferrari R, Pearce P, and Harris P. Pulmonary hemodynamics of the yak, cattle, and cross breeds at high altitude. Thorax. 1986; 41:696–700.

    CAS  PubMed  Google Scholar 

  3. Banchero N, Grover RF, and Will JA. High altitude-induced pulmonary arterial hypertension in the llama (Lama glama). Am. J. Physiol. 1971; 220:422–427.

    CAS  PubMed  Google Scholar 

  4. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, and Weston AH. EDHF: bringing the concepts together. Trends Pharmacol. Sci. 2002; 23:374–380.

    Article  CAS  PubMed  Google Scholar 

  5. Christman BW, McPherson CD, Newman JH, King GA, Bernard GR, Groves BM, and Loyd JE. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N. Engl. J. Med. 1992; 327:70–75.

    CAS  PubMed  Google Scholar 

  6. Colice GL, Hill NS, Lee Y-J, Du H, Klinger J, Leiter JC, and Ou L-C. Exaggerated pulmonary hypertensive response to monocrotaline in rats susceptible to chronic mountain sickness. J. Appl. Physiol. 1997; 83:25–31.

    CAS  PubMed  Google Scholar 

  7. Cooper AL, and Beasley D. Hypoxia stimulates proliferation and interleukin-1 alpha production in human vascular smooth muscle cells. Am. J. Physiol. 1999; 277:H1326–H1337.

    CAS  PubMed  Google Scholar 

  8. Durmowicz AG, Hofmeister S, Kadyraliev TK, Aldashev AA, and Stenmark KR. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J. Appl. Physiol. 1993; 74:2276–2285.

    CAS  PubMed  Google Scholar 

  9. Du HK, Lee YJ, Colice GL, Leiter JC, and Ou LC. Pathophysiological effects of hemodilution in chronic mountain sickness in rats. J. Appl. Physiol. 1996; 80:574–582.

    CAS  PubMed  Google Scholar 

  10. Fagan KA, McMurtry IF, and Rodman DM. Role of endothelin-1 in lung disease. Respir. Res. 2001; 2:90–101.

    CAS  PubMed  Google Scholar 

  11. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, and Busse R. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature. 1999; 401:493–497.

    CAS  PubMed  Google Scholar 

  12. Fukuroda, T, Fujikawa T, Ozaki S, Ishikawa K, Yano M, and Nishikibe M. Clearance of circulating endothelin-1 by ETB receptors in rats. Biochem. Biophys. Res. Commun. 1994; 199:1461–1465.

    Article  CAS  PubMed  Google Scholar 

  13. Ge RL, Kubo K, Kobayashi T, Sekiguchi M, and Honda T. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am. J. Physiol. 1998; 274:H1792–H1799.

    CAS  PubMed  Google Scholar 

  14. Geraci MW, Gao B, Shepherd DC, Moore MD, Westcott JY, Fagan KA, Alger LA, Tuder RM, and Voelkel NF. Pulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension. J. Clin. Invest. 1999; 103: 1509–1515.

    CAS  PubMed  Google Scholar 

  15. Giaid A, and Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 1995; 333: 214–221.

    Article  CAS  PubMed  Google Scholar 

  16. Grover RF, Reeves, JT, Will DH, and Blount SG, Jr. Pulmonary vasoconstriction in steers at high altitude. J. Appl. Physiol. 1963; 18: 567–574.

    Google Scholar 

  17. Groves BM, Droma T, Sutton JR, McCullough RG, McCullough RE, Zhuang J, Rapmund G, Sun S, Janes C, and Moore LG. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J. Appl. Physiol. 1993; 74:312–318.

    CAS  PubMed  Google Scholar 

  18. Gupta ML, Rao KS, Anand IS, Banerjee AK, and Boparai MS. Lack of smooth muscle in the small pulmonary arteries of the native Ladakhi. Is the Himalayan highlander adapted? Ann. Rev. Respir. Dis. 1992; 145: 1201–1204.

    CAS  Google Scholar 

  19. Hampl V, and Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol. Rev. 2000; 80:1337–1372.

    CAS  PubMed  Google Scholar 

  20. Hecht HH, Kuida H, Lange RL, Thorne JL, Brown AM, Carlisle R, Ruby A, and Verayha F. Brisket Disease. Am. J. Med. 1962; 32:171–183.

    CAS  Google Scholar 

  21. Hill NS, and Ou LC. The role of pulmonary vascular responses to chronic hypoxia in the development of chronic mountain sickness in rats. Respir. Physiol. 1984; 581:171–185.

    Google Scholar 

  22. Hill NS, Petit RD, Gagnon J, Warburton RR, and Ou LC. Hematologic responses and the early development of hypoxic pulmonary hypertension in rats. Respir. Physiol. 1993; 91:271–282.

    PubMed  Google Scholar 

  23. Hill NS, Sardella GL, and Ou LC. Reticulocytosis, increased mean red cell volume, and greater blood viscosity in altitude susceptible compared to altitude resistant rats. Respir. Physiol. 1987; 70:241–249.

    CAS  PubMed  Google Scholar 

  24. Hill NS, Smith RP, and Ou LC. Time course of the development of cardiopulmonary responses to chronic hypoxia in two strains of rat with differing susceptibilities to high altitude. Respir. Physiol. 1987; 70:229–240.

    CAS  PubMed  Google Scholar 

  25. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, and Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003; 31:115–123.

    Article  Google Scholar 

  26. Ivy DD, Yanagisawa M, Gariepy CE, Gebb SA, Colvin KL, and McMurtry IF. Exaggerated hypoxic pulmonary hypertension in endothelin B receptor-deficient rats. Am. J. Physiol. 2002; 282:L703–L712.

    CAS  Google Scholar 

  27. Kam HY, Ou LC, Thron CD, Smith RP, and Leiter JC. The role of the spleen in the hematological response to hypoxia in Chronic Mountain Sickness in rats. J. Appl. Physiol. 1999; 87:1901–1908.

    CAS  PubMed  Google Scholar 

  28. Karamsetty MR, Nakashima JM, Ou L-C, Klinger JR, and Hill NS. EDHF contributes to strain-related differences in pulmonary arterial relaxation in rats. Am. J. Physiol. 2001; 280:L458–L464.

    CAS  Google Scholar 

  29. Karamsetty MR, Pietras L, Klinger JR, Lanzillo JJ, Leiter JC, Ou L-C, and Hill NS. The role of endothelin-1 in strain-related susceptibility to develop hypoxic pulmonary hypertension in rats. Respir. Physiol. 2001; 128: 219–227.

    Article  CAS  PubMed  Google Scholar 

  30. Klinger JR, Warburton RR, Pietras L, Oliver P, Fox J, Smithies O, and Hill NS. Targeted disruption of the gene for natriuretic receptor-A worsens hypoxia-induced cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2002; 282:H58–H65.

    CAS  PubMed  Google Scholar 

  31. Langleben D, Jones RC, Aronovitz MJ, Hill NS, Ou LC, and Reid LM. Pulmonary artery changes in two colonies of rats with differing sensitivity to chronic hypoxia. Am. J. Pathol. 1987; 128:61–66.

    CAS  PubMed  Google Scholar 

  32. Moncada S, Gryglewski R, Bunting S, and Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976; 263:663–665.

    Article  CAS  PubMed  Google Scholar 

  33. Monge CC. Chronic mountain sickness. Physiol. Rev. 1943; 23: 66–184.

    Google Scholar 

  34. Ou LC. Hypoxia-induced hemoglobinemia: hypoxic threshold and pathogenic mechanisms. Exp. Hemat. 1980; 8:243–248.

    CAS  PubMed  Google Scholar 

  35. Ou LC, Cai YN, and Tenney SM. Responses of blood volume and red cell mass in two strains of rats acclimatized to high altitude. Respir. Physiol. 1985; 62:85–94.

    Article  CAS  PubMed  Google Scholar 

  36. Ou LC, Chen J, Fiore E, Leiter JC, Brinck-Johnsen T, Birchard GF, Clemons G, and Smith RP. Ventilatory and hematopoietic responses to chronic hypoxia in two rat strains. J. Appl. Physiol. 1992; 72:2354–2363.

    CAS  PubMed  Google Scholar 

  37. Ou LC, Hill NS, Pickett BP, Faulkner CS, Sardella GL, Thron CD, and Tenney SM. “Hypoxia-induced Right ventricular aneurysm.” In Right Hypertrophy and Function in Chronic Lung Disease, Jezek V, Morpurgo M, and Tramarin R, eds. London: Springer-Verlag, 1992, pp. 55–64.

    Google Scholar 

  38. Ou LC, Hill NS, and Tenney SM. Ventilatory responses and blood gases in susceptible and resistant rats to high altitude. Respir. Physiol. 1984; 58:161–170.

    Article  CAS  PubMed  Google Scholar 

  39. Ou LC, Salceda S, Schuster SJ, Dunnack LM, Brinck-Johnsen T, Chen J, and Leiter JC. Polycythemic responses to hypoxia: Molecular and genetic mechanisms of chronic mountain sickness. J. Appl. Physiol. 1998; 84:1242–1251.

    CAS  PubMed  Google Scholar 

  40. Ou LC, Sardella GL, Hill NS, and Tenney SM. Acute and chronic pulmonary pressor responses to hypoxia: the role of blunting in acclimatization. Respir. Physiol. 1986; 64:81–91.

    Article  CAS  PubMed  Google Scholar 

  41. Ou LC, and Smith RP. Probable strain differences of rats in susceptibilities and cardiopulmonary responses to chronic hypoxia. Respir. Physiol. 1983; 53:367–377.

    Article  CAS  PubMed  Google Scholar 

  42. Ou LC, and Smith RP. Strain and sex differences in the cardiopulmonary adaptation of rats to high altitude. Proc. Soc. Exp. Biol. Med. 1984; 177:308–311.

    CAS  PubMed  Google Scholar 

  43. Petit RD, Warburton RR, Ou LC, Brinck-Johnson T, and Hill NS. Exogenous erythropoietin fails to augment hypoxic pulmonary hypertension in rats. Respir. Physiol. 1993; 91:261–270.

    PubMed  Google Scholar 

  44. Salameh G, Karamsetty MR, Warburton RR, Klinger JR, Ou L-C, and Hill NS. Differences in acute hypoxic pulmonary vasoresponsiveness between rat strains: Role of endothelium. J. Appl. Physiol. 99; 87:356–362.

    Google Scholar 

  45. Stelzner TJ, O’Brien RF, Yanagisawa M, Sakurai T, Sato K, Webb S, Zamora M, McMurtry IF, and Fisher JH. Increased lung endothelin-1 production in rats with idiopathic pulmonary hypertension. Am. J. Physiol. 1992; 262:L614–L620.

    CAS  PubMed  Google Scholar 

  46. Steudel W, Ichinose F, Huang PL, Hurford WE, Jones RC, Bevan JA, Fishman MC, and Zapol WM. Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ. Res. 1997; 81:34–41.

    CAS  PubMed  Google Scholar 

  47. Tucker A, McMurtry IF, Reeves JT, Alexander AF, Will DH, and Grover RF. Lung vascular smooth muscle as a determinant of pulmonary hypertension at high altitude. Am. J. Physiol. 1975; 228:762–767.

    CAS  PubMed  Google Scholar 

  48. Tuder RM, Cool CD, Geraci MW, Wang J, Abman SH, Wright L, Badesch D, and Voelkel NF. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1999; 159:1925–1932.

    CAS  PubMed  Google Scholar 

  49. Underwood DC, Bochnowicz S, Osborn RR, Louden CS, Hart TK, Ohlstein EH, and Hay DW. Chronic hypoxia-induced cardiopulmonary changes in three rat strains: inhibition by the endothelin receptor antagonist SB 217242. J. Cardiovasc. Pharmacol. 1998; 31(S1):S453–S455.

    Google Scholar 

  50. Weir EK, Tucker A, Reeves JT, Will DH and Grover RF. The genetic factor influencing pulmonary hypertension in cattle at high altitude. Cardiovasc. Res. 1974; 8:745–749.

    CAS  PubMed  Google Scholar 

  51. Williams D. Adaptation and acclimatisation in humans and animals at high altitude. Thorax. 1994; 49:S9–S13.

    PubMed  Google Scholar 

  52. Wohrley JD, Frid MG, Moiseeva EP, Orton EC, Belknap JK, and Stenmark KR. Hypoxia selectively induces proliferation in a specific subpopulation of smooth muscle cells in the bovine neonatal pulmonary arterial media. J. Clin. Invest. 1995; 96:273–281.

    CAS  PubMed  Google Scholar 

  53. Zhu D, Effros RM, Harder DR, Roman RJ, and Jacobs ER. Tissue sources of cytochrome P450 4A and 20-HETE synthesis in rabbit lungs. Am. J. Respir. Cell. Mol. Biol. 1998; 19:121–128.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Karamsetty, M.R., Leiter, J.C., Ou, L.C., Preston, I.R., Hill, N.S. (2004). Strain Differences of Hypoxia-Induced Pulmonary Hypertension. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_30

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics