Skip to main content

Roles for Vasoconstriction and Gene Expression in Hypoxia-induced Pulmonary Vascular Remodeling

  • Chapter
  • 115 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

Summary

The development and maintenance of hypoxia-induced pulmonary vascular remodeling is not related only to the precapillary pressure increase and shear stress that result from pulmonary vasoconstriction. The recent finding that several mammalian species and mice with 5-HTT deficiency show little hypoxic pulmonary vascular remodeling despite a strong acute hypoxic pressor response suggests that precapillary vasoconstriction may not fully explain the pathophysiology of hypoxic PH. SMC proliferation, the main component of hypoxic pulmonary vascular remodeling, may be best viewed as a process linked to the direct effect of hypoxia on the expression of various genes. Exposure to hypoxia has been shown to downregulate K gn -channel ga subunits in SMCs from pulmonary arteries, thereby decreasing K+ flows and increasing cytoplasmic Ca2+ concentrations in these cells. The effect of hypoxia on gene expression may also alter the balance between pro-and anti-proliferative factors derived from the endothelium. Hypoxia increases the expression of ET-1 and PDGF and decreases the expression of heparan sulfate, prostacyclin synthase, and eNOS synthase. Hypoxia is also known to increase the transcription rate of various genes involved in vascular remodeling through hypoxia-inducible transcription factors. VEGF, which is the product of one of the genes containing functionally important binding sites for HIF-1, may protect against the development of hypoxic PH by stimulating angiogenic processes. Recent experimental findings demonstrate that an increase in the transcription rate of the 5-HTT gene in response to hypoxia plays a major role in pulmonary SMC proliferation. 5-HTT expression is genetically controlled, and a polymorphism in the promoter region of the human gene affects transcriptional activity, the long promoter variant of the gene being associated with increased expression as compared with the short variant. The ability of SMCs to proliferate in response to 5-HT is linked to this functional polymorphism, which may confer susceptibility to various forms of PH in humans, most notably chronic hypoxic PH.

The recent finding that several factors, including 5-HT and ET, are involved not only in experimental hypoxic PH but also in human primary PH suggests that common mechanisms lead to pulmonary vascular remodeling, whatever the inciting causal factor. This provides a strong rationale for actively investigating the mechanisms that underlie the complex vascular changes responsible for the hypoxia-induced pulmonary vascular remodeling. Such studies may identify new molecular pathways involved in various types of PH.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adnot S, Raffestin B, Eddahibi S, Braquet P, and Chabrier P. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J. Clin. Invest. 1991; 87: 155–162

    CAS  PubMed  Google Scholar 

  2. Christou H, Yoshida A, Arthur V, Morita T, and Kourembanas S. Increased vascular endothelial growth factor production in the lungs of rats with hypoxia-induced pulmonary hypertension. Am. J. Respir. Cell. Mol. Biol. 1998; 18: 768–776.

    CAS  PubMed  Google Scholar 

  3. Eddahibi S, Adnot S, Frisdal E, Levame M, Hamon M, and Raffestin B. Dexfenfluramine-associated changes in 5-hydroxytryptamine transporter expression and development of hypoxic pulmonary hypertension in rats. J. Pharmacol. Exp. Ther. 2001; 297: 148–154.

    CAS  PubMed  Google Scholar 

  4. Eddahibi S, Fabre V, Boni C, Martres M, Raffestin B, Hamon M, and Adnot S. Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells: relationship with the mitogenic action of serotonin. Circ. Res. 1999; 84: 329–336.

    CAS  PubMed  Google Scholar 

  5. Eddahibi S, Hanoun N, Lanfumey L, Lesch KP, Raffestin B, Hamon M, and Adnot S. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J. Clin. Invest. 2000; 105: 1555–1562.

    CAS  PubMed  Google Scholar 

  6. Eddahibi S, Humbert M, Fadel E, Raffestin B, Darmon M, Capron F, Simonneau G, Dartevelle P, Hamon M, and Adnot S. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension;. J. Clin. Invest. 2001; 108: 1141–1150.

    Article  CAS  PubMed  Google Scholar 

  7. Eddahibi S, Raffestin B, Pham I, Launay JM, Aegerter P, Sitbon M, and Adnot S. Treatment with 5-HT potentiates development of pulmonary hypertension in chronically hypoxic rats. Am. J. Physiol. 1997; 272: H1173–H1181.

    CAS  PubMed  Google Scholar 

  8. Hanson WL, Boggs DF, Kay JM, Hofmeister SE, Okada O, and Wagner WW Jr. Pulmonary vascular response of the coati to chronic hypoxia. J. Appl. Physiol. 2000; 88: 981–986.

    CAS  PubMed  Google Scholar 

  9. Humphries DE, Lee SL, Fanburg BL, and Silbert JE. Effects of hypoxia and hyperoxia on proteoglycan production by bovine pulmonary endothelial cells. J. Cell Physiol. 1986; 126: 249–253.

    Article  CAS  PubMed  Google Scholar 

  10. Itoh H, Pratt RE, and Dzau VJ. Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J. Clin. Invest. 1990; 86: 1690–1697.

    CAS  PubMed  Google Scholar 

  11. Katayose D, Ohe M, Yamauchi K, Ogata M, Shirato K, Fujita H, Shibahara S, and Takishima T. Increased expression of PDGF A-and B-chain genes in rat lungs with hypoxic pulmonary hypertension. Am. J. Physiol. 1993; 264: L100–L106.

    CAS  PubMed  Google Scholar 

  12. Keegan A, Morecroft I, Smillie D, Hicks MN, and MacLean MR. Contribution of the 5-HT1B-receptor to hypoxia-induced pulmonary hypertension. Circ. Res. 2001; 89: 1231–1239.

    CAS  PubMed  Google Scholar 

  13. Kolpakov V, Rekhter MD, Gordon D, Wang WH, and Kulik TJ. Effect of mechanical forces on growth and matrix protein synthesis in the in vitro pulmonary artery. Circ. Res. 1995; 77: 823–831.

    CAS  PubMed  Google Scholar 

  14. Launay J, Hervé P, Peoc’h K, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, and Maroteaux L. Function of the serotonin 5-hydroxytryptamine 2Breceptor in pulmonary hypertension. Nat. Med. 2002; 8: 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  15. Lee SL, Wang WW, and Fanburg BL. Association of Tyr Phosphorylation of GTPase — activating protein with mitogenic action of serotonin. Am. J. Physiol. 1997; 272: C223–C230.

    CAS  PubMed  Google Scholar 

  16. Lee S-L, Wang W-W, Finlay GA, and Fanburg BL. Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion. Am. J. Physiol. 1999; 277: L282–L291.

    CAS  PubMed  Google Scholar 

  17. Liu Y, Cox SR, Morita T, and Kourembanas S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Circ. Res. 1995; 77: 638–643.

    CAS  PubMed  Google Scholar 

  18. Lockhart A, Zelter M, Mensch-Dechene J, Antezana G, Paz-Zamora M, Vargas E, and Coudert J. Pressure-flow-volume relationships in pulmonary circulation of normal Highlanders. J. Appl. Physiol. 1976; 41: 449–56.

    CAS  PubMed  Google Scholar 

  19. Madden MC, Vender RL, and Friedman M. Effect of hypoxia on prostacyclin production in cultured pulmonary artery endothelium. Prostaglandins. 1986; 31: 1049–1062.

    Article  CAS  PubMed  Google Scholar 

  20. McQuillan LP, Leung GK, Marsden PA, Kostyk SK, and Kourembanas S. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am. J. Physiol. 1994; 267: H1921–H1927

    CAS  PubMed  Google Scholar 

  21. Means A. Calcium, calmodulin and cell cycle regulation. FEBS lett. 1994; 347: 1–4.

    Article  CAS  PubMed  Google Scholar 

  22. Oparil S, Chen SJ, Meng QC, Elton TS, Yano M, and Chen YF. Endothelin-A receptor antagonist prevents acute hypoxia-induced pulmonary hypertension in the rat. Am. J. Physiol. 1995; 268: L95–L100.

    CAS  PubMed  Google Scholar 

  23. Partovian C, Adnot S, Raffestin B, Louzier V, Levame M, Mavier IM, Lemarchand P, and Eddahibi S. Adenovirus-mediated lung VEGF overexpression protects against hypoxic pulmonary hypertension in rats. Am. J. Respir. Cell. Mol. Biol. 2000; 23: 762–771.

    CAS  PubMed  Google Scholar 

  24. Platoshyn O, Yu Y, Golovina V, McDaniel S, Krick S, Li L, Wang J, Tubin L, and Yuan JX-J. Chronic hypoxia decreases Kv channel expression and function in pulmonary artery myocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L801–L812.

    CAS  PubMed  Google Scholar 

  25. Rabinovitch M, Gamble W, Nadas AS, Miettinen OS, and Reid L. Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am. J. Physiol. 1979; 236: H818–H827.

    CAS  PubMed  Google Scholar 

  26. Rabinovitch M, Konstam MA, Gamble WJ, Papanicolaou N, Aronovitz MJ, Treves S, and Reid L. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circ. Res. 1983; 52: 432–441.

    CAS  PubMed  Google Scholar 

  27. Reeves J and Herget J. Experimental Models of Pulmonary Hypertension. Mount Kisco: Futura Publishing Company, 1984.

    Google Scholar 

  28. Rose F, Grimminger F, Appel J, Pies V, Weissmann N, Fink L, Schmidt S, Krick S, Camenish G, Gassmann N, Seeger W, and Hänze J. Hypoxic pulmonary artery fibroblasts trigger proliferation of vascular smooth muscle cells-role of hypoxia-inducible transcription factors. FASEBJ. 2002; 16: 1660–1661.

    CAS  Google Scholar 

  29. Smirnov SV, Robertson TP, Ward JPT, and Aaronson PI. Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary muscle cells. Am. J. Physiol. 1994; 266: H365–H370.

    CAS  PubMed  Google Scholar 

  30. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, McMahon G, Waltenberger J, Voelkel NF, and Tuder RM. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 2001; 15: 427–38.

    Article  CAS  PubMed  Google Scholar 

  31. Tozzi CA, Polani GJ, Harangozo AM, Boyd CD, and Riley DJ. Pressure-induced connective tisssue synthesis in pulmonary artery segments is dependent on intact endothelium. J. Clin. Invest. 1989; 84: 1005–1012.

    CAS  PubMed  Google Scholar 

  32. Xue C and Johns RA. Upregulation of nitric oxide synthase correlates temporally with onset of pulmonary vascular remodeling in the hypoxic rat. Hypertension. 1996; 28: 743–753.

    CAS  PubMed  Google Scholar 

  33. Yet S-F, Perrella MA, Layne MD, Hsieh C-M, Maemura K, Kobzik L, Wiesel P, Christou H, Kourembanas S, and Lee M-E. Hypoxia induces severe right ventricular dilation and infarction in heme oxygenase-1 null mice. J. Clin. Invest. 1999; 103: R23–R29.

    CAS  PubMed  Google Scholar 

  34. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JSK, Wiener CM, Sylvester JT, and Semenza GL. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α J. Clin. Invest. 1999; 103: 691–696.

    CAS  PubMed  Google Scholar 

  35. Zamora MA, Dempsey EC, Walchak SJ, and Stelzner TJ. BQ123, an ETA receptor antagonist, inhibits endothelin-1 mediated proliferation of human pulmonary artery smooth muscle cells. Am. J. Respir. Cell. Mol. Biol. 1993; 9: 429–433.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Raffestin, B., Adnot, S., Eddahibi, S. (2004). Roles for Vasoconstriction and Gene Expression in Hypoxia-induced Pulmonary Vascular Remodeling. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_28

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics