Skip to main content

Hypoxia-sensitive Transcription Factors and Growth Factors

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

Conclusion

The role of growth factors in HPH is an open book, with no ending in sight. As novel vascular growth factors are discovered, and as we learn more about their biological and pathobiological role, we add a new level of understanding in HPH. Undoubtedly, abnormal vascular cell growth is at the center of pulmonary vascular remodeling in pulmonary hypertension (Fig. 3). In the next few years, the elucidation of master control levels of pulmonary vascular remodeling using genomics and proteonomics of human lung tissue compromised by pulmonary hypertension and transgenic models of pulmonary hypertension may shed important information in the relative contribution of growth factor in the pathogenesis of HPH.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balasubramaniam V, Le Cras TD, Ivy DD, Grover T R, Kinsella JP, and Abman SH. Role of platelet derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003; 184: L826–L833.

    Google Scholar 

  2. Blumberg FC, Lorenz C, Wolf K, Sandner P, Riegger GA, and Pfeifer M. Increased pulmonary prostacyclin synthesis in rats with chronic hypoxic pulmonary hypertension. Cardiovasc. Res. 2002; 55: 171–177.

    Article  CAS  PubMed  Google Scholar 

  3. Christou H, Yoshida A, Arthur V, Morita T, and Kourembanas S. Increased vascular endothelial growth factor production in the lungs of rats with hypoxia-induced pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 1998; 18: 768–776.

    CAS  PubMed  Google Scholar 

  4. Clapp LH, Finney P, Turcato S, Tran S, Rubin LJ, and Tinker A. Differential effects of stable prostacyclin analogs on smooth muscle proliferation and cyclic AMP generation in human pulmonary artery. Am. J. Respir. Cell Mol. Biol. 2002; 26: 194–201.

    CAS  PubMed  Google Scholar 

  5. Das M, Bouchey DM, Moore MJ, Hopkins DC, Nemenoff RA, and Stenmark KR. Hypoxia-induced proliferative response of vascular adventitial fibroblasts is dependent on g protein-mediated activation of mitogen-activated protein kinases. J. Biol. Chem. 2001; 276: 15631–15640.

    CAS  PubMed  Google Scholar 

  6. Eddahibi S, Hanoun N, Lanfumey L, Lesch KP, Raffestin B, Hamon M, and Adnot S. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J. Clin. Invest. 2000; 105: 1555–1562.

    CAS  PubMed  Google Scholar 

  7. Eddahibi S, Humbert M, Fadel E, Raffestin B, Darmon M, Capron F, Simonneau G, Dartevelle P, Hamon M, and Adnot S. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J. Clin. Invest. 2001; 108: 1141–1150.

    Article  CAS  PubMed  Google Scholar 

  8. Eddahibi S, Raffestin B, Launay JM, Sitbon M, and Adnot S. Effect of dexfenfluramine treatment in rats exposed to acute and chronic hypoxia. Am. J. Respir. Crit. Care Med. 1998; 157: 1111–1119.

    CAS  PubMed  Google Scholar 

  9. Fagan KA, Morrissey B, Fouty BW, Sato K, Harral JW, Morris KG Jr, Hoedt-Miller M, Vidmar S, McMurtry IF, and Rodman DM. Upregulation of nitric oxide synthase in mice with severe hypoxia-induced pulmonary hypertension. Respir. Res. 2001; 2: 306–313.

    CAS  PubMed  Google Scholar 

  10. Fu XW, Nurse CA, Wong V, and Cutz E. Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J. Physiol. 2002; 539: 503–510.

    Article  CAS  PubMed  Google Scholar 

  11. Geraci MW, Gao B, Shepherd DC, Moore MD, Westcott JY, Fagan KA, Alger LA, Tuder RM, and Voelkel NF. Pulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension. J. Clin. Invest. 1999; 103: 1509–1515.

    CAS  PubMed  Google Scholar 

  12. Hoshikawa Y, Voelkel NF, Gesell TL, Moore MD, Morris KG, Alger LA, Narumiya S, and Geraci MW. Prostacyclin receptor-dependent modulation of pulmonary vascular remodeling. Am. J. Respir. Crit. Care Med. 2001; 164: 314–318.

    CAS  PubMed  Google Scholar 

  13. Keegan A, Morecroft I, Smillie D, Hicks MN, and MacLean MR. Contribution of the 5-HT1B receptor to hypoxia-induced pulmonary hypertension: converging evidence using 5-HT1B-receptor knockout mice and the 5-HT1B/1D-receptor antagonist GR127935. Circ. Res. 2001; 89: 1231–1239.

    CAS  PubMed  Google Scholar 

  14. Khachigian LM, Williams AJ, and Collins T. Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascular endothelial cells. J. Biol. Chem. 1995; 270: 27679–27686.

    CAS  PubMed  Google Scholar 

  15. Launay JM, Hervé P, Peoc’h K, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, and Maroteaux L. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat. Med. 2002; 8: 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  16. Lee SL, Simon AR, Wang WW, and Fanburg BL. H2O2 signals 5-HT-induced ERK MAP kinase activation and mitogenesis of smooth muscle cells. Am. J. Physiol Lung Cell. Mol. Physiol. 2001; 281: L646–L652.

    CAS  PubMed  Google Scholar 

  17. Li H, Chen SJ, Chen YF, Meng QC, Durand J, Oparil S, and Elton T. S. Enhanced endothelin-1 and endothelin receptor gene expression in chronic hypoxia. J. Appl. Physiol. 1994; 77: 1451–1459.

    CAS  PubMed  Google Scholar 

  18. McLaughlin VV, Genthner DE, Panella MM, and Rich S. Reduction in pulmonary vascular resistance with long-term epoprostenol (prostacyclin) therapy in primary pulmonary hypertension. N. Engl. J. Med. 1998; 338: 273–277.

    Article  CAS  PubMed  Google Scholar 

  19. Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, and Kourembanas S. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc. Nad. Acad. Sci. USA. 2001; 98: 8798–8803.

    CAS  Google Scholar 

  20. Ono S, Westcott JY, and Voelkel NF. PAF antagonists inhibit pulmonary vascular remodeling induced by hypobaric hypoxia in rats. J. Appl. Physiol. 1992; 73: 1084–1092.

    CAS  PubMed  Google Scholar 

  21. Ozaki M, Kawashima S, Yamashita T, Ohashi Y, Rikitake Y, Inoue N, Hirata KI, Hayashi Y, Itoh H, and Yokoyama M. Reduced hypoxic pulmonary vascular remodeling by nitric oxide from the endothelium. Hypertension. 2001; 37: 322–327.

    CAS  PubMed  Google Scholar 

  22. Partovian C, Adnot S, Raffestin B, Louzier V, Levame M, Mavier IM, Lemarchand P, and Eddahibi S. Adenovirus-mediated lung vascular endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats. Am. J. Respir. Cell Mol. Biol. 2000; 23: 762–771.

    CAS  PubMed  Google Scholar 

  23. Reid LM and Davies P. Control of cell proliferation in pulmonary hypertension. In Pulmonary Vascular Physiology and Pathophysiology, Weir EK and Reeves JT, eds. New York, NY: Marcel Dekker, 1989, pp. 541–611.

    Google Scholar 

  24. Rose F, Grimminger F, Appel J, Heller M, Pies V, Weissmann N, Fink L, Schmidt S, Krick S, Camenisch G, Gassmann M, Seeger W, and Hanze J. Hypoxic pulmonary artery fibroblasts trigger proliferation of vascular smooth muscle cells: role of hypoxia-inducible transcription factors. FASEB J. 2002; 16: 1660–1661.

    CAS  PubMed  Google Scholar 

  25. Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol. 2002; 64: 993–998.

    Article  CAS  PubMed  Google Scholar 

  26. Tamm M, Bihl M, Eickelberg O, Stulz P, Perruchoud AP, and Roth M. Hypoxia-induced interleukin-6 and interleukin-8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells. Am. J. Respir. Cell Mol. Biol. 1998; 19: 653–661.

    CAS  PubMed  Google Scholar 

  27. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, McMahon G, Waltenberger J, Voelkel NF, and Tuder RM. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 2001; 15: 427–438.

    Article  CAS  PubMed  Google Scholar 

  28. Teng X, Li D, Catravas JD, and Johns RA. C/EBP-β mediates iNOS induction by hypoxia in rat pulmonary microvascular smooth muscle cells. Circ. Res. 2002; 90: 125–127.

    Article  CAS  PubMed  Google Scholar 

  29. Tuder RM, Cool CD, Geraci MW, Wang J, Abman SH, Wright L, Badesch D, and Voelkel NF. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1999; 159: 1925–1932.

    CAS  PubMed  Google Scholar 

  30. Tuder RM, Flook BE, and Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J. Clin. Invest. 1995; 95: 1798–1807.

    CAS  PubMed  Google Scholar 

  31. Voelkel NF and Tuder RM. Hypoxia-induced pulmonary vascular remodeling: a model for what human disease? J. Clin. Invest. 2000; 106: 733–738.

    CAS  PubMed  Google Scholar 

  32. Voelkel NF, Tuder RM, Wade K, Hoper M, Lepley RA, Goulet JL, Koller BH, and Fitzpatrick F. Inhibition of 5-lipoxygenase-activating protein (FLAP) reduces pulmonary vascular reactivity and pulmonary hypertension in hypoxic rats. J. Clin. Invest. 1996; 97: 2491–2498.

    CAS  PubMed  Google Scholar 

  33. Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R, Houliston RA, Martin J, and Zachary I. Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett. 1997; 420: 28–32.

    Article  CAS  PubMed  Google Scholar 

  34. Yan S-F, Fujita T, Lu J, Okada K, Shan Zou Y, Mackman N, Pinsky DJ, and Stern DM. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat. Med. 2000; 6: 1355–1361.

    CAS  PubMed  Google Scholar 

  35. Yan SF, Tritto I, Pinsky D, Liao H, Huang J, Fuller G, Brett J, May L, and Stern D. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J. Biol. Chem. 1995; 270: 11463–11471.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zaiman, A.L., Tuder, R.M. (2004). Hypoxia-sensitive Transcription Factors and Growth Factors. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_25

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics