Skip to main content

Oxygen Sensing by Adrenomedullary Chromaffin Cells

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

  • 116 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams M, Simonetta G, and McMillen IC. The non-neurogenic catecholamine response of the fetal adrenal to hypoxia is dependent on activation of voltage sensitive Ca2+ channels. Brain Res. Devel. Brain Res. 1996; 94: 182–189.

    CAS  Google Scholar 

  2. Archer S and Michelakis E. The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O2 sensors, and controversies. News Physiol. Sci. 2002; 17: 131–137.

    CAS  PubMed  Google Scholar 

  3. Archer SL, Souil E, Dinh-Xuan AT, Schremmer B, Mercier J-C, Yaagoubi AE, Nguyen-Huu L, Reeve HL, and Hampl V. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J. Clin. Invest. 1998; 101: 2319–2330.

    CAS  PubMed  Google Scholar 

  4. Artalejo C, Adams M, and Fox A. Three types of Ca2+ channels trigger secretion with different efficacies in chromaffin cells. Nature. 1994; 367: 72–76.

    Article  CAS  PubMed  Google Scholar 

  5. Comline RS and Silver M. The release of adrenaline and noradrenaline from the adrenal glands of the foetal sheep. J. Physiol. 1961; 156: 424–444.

    CAS  PubMed  Google Scholar 

  6. Conforti L, Bodi I, Nisbit J, and Millhorn D. O2-sensitive K+ channels: role of the Kv1.2-subunit in mediating the hypoxic response. J. Physiol. 2000; 524: 783–793.

    Article  CAS  PubMed  Google Scholar 

  7. Cross A, Henderson L, Jones O, Delpiano M, Hetschel J, and Acker H. Involvement of and NAD(P)H oxidase as PO2 sensor protein in the rat carotid body. Biochem. J. 1990; 272: 743–747.

    CAS  PubMed  Google Scholar 

  8. Fearon IM, Thompson RJ, Samjoo I, Vollmer C, Doering L, and Nurse C. O2-sensitive K+ channels in rat adrenal-derived MAH cells. J. Physiol. 2002; 545: 807–818.

    Article  CAS  PubMed  Google Scholar 

  9. Fu X, Wang D, Nurse C, Dinauer M, and Cutz E. NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc. Nat. Acad. Sci. USA. 2000; 97: 4374–4379.

    Article  CAS  PubMed  Google Scholar 

  10. Gozal D. Potentiation of hypoxic ventalitory response by hyperoxia in the conscious rat: putative role of nitric oxide. J. Appl. Physiol. 1998; 85: 129–132.

    CAS  PubMed  Google Scholar 

  11. Holgert H, Dagerlind A, Hokfelt T, and Lagercrantz H. Neuronal markers, peptides and enzymes in nerves and chromaffin cells in the rat adrenal medulla during postnatal development. Brain Res. Devel. Brain Res. 1994; 83: 35–52.

    CAS  Google Scholar 

  12. Inoue M, Fujishiro N, and Imanaga I. Na+ pump inhibition and non-selective cation channel activation by cyanide and anoxia in guinea-pig chromaffin cells. J. Physiol. 1999; 519: 385–396.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang C and Haddad G. Short periods of hypoxia activate a K+ current in central neurons. Brain Res. 1993; 614: 352–356.

    Article  CAS  PubMed  Google Scholar 

  14. Keating DJ, Rychkov GY, and Roberts ML. Oxygen sensitivity in the sheep adrenal medulla: role of SK channels. Am. J. Physiol Cell Physiol. 2001; 281: C1434–C1431

    CAS  PubMed  Google Scholar 

  15. Lagercrantz H and Bistoletti P. Catecholamine release in the newborn infant at birth. Pediatr. Res. 1977; 8: 889–893.

    Google Scholar 

  16. Lee J, Lim W, Eun S-Y, Kim SJ, and Kim J. Inhibition of apamin-sensitive K+ current by hypoxia in adult rat adrenal chromaffin cells. Pflügers Arch. 2000; 439: 700–704.

    Article  CAS  PubMed  Google Scholar 

  17. Lewis A, Peers C, Ashford M, and Kemp P. Hypoxia inhibits human recombinant large conductance, Ca2+-activated K+ (maxi-K) channels by a mechanism which is membrane delimited and Ca2+ sensitive. J. Physiol. 2002; 540: 771–780.

    Article  CAS  PubMed  Google Scholar 

  18. López-Barneo J, Pardal R, and Ortega-Sáenz P. Cellular mechanism ofoxygen sensing. Annu. Rev. Physiol. 2001; 63: 259–287.

    PubMed  Google Scholar 

  19. Michelakis ED, Hampl V, Nsair A, Wu XC, Harry G, Haromy A, Gurtu R, Archer SL. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ. Res. 2002; 90: 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  20. Mochizuki-Oda N, Takeuchi Y, Matsumura K, Oosawa Y, and Watanabe Y. Hypoxia-induced catecholamine release and intracellular Ca2+ increase via suppression of K+ channels in cultured rat adrenal chromaffin cells. J. Neurochem. 1997; 69: 377–387.

    CAS  PubMed  Google Scholar 

  21. Mojet M, Mills E, and Duchen MR. Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration. J. Physiol. 1997; 504: 175–189.

    Article  CAS  PubMed  Google Scholar 

  22. Nurse CA, Fearon IM, Jackson A, and Thompson RJ. “Oxygen sensing by neonatal adrenal chromaffin cells: A role for mitochondria?” In Oxygen Sensing: Responses and Adaptations to Hypoxia, Lahiri S, Semenza G, and Prabhakar N, eds. New York, NY: Marcel Dekker Inc., 2003, pp. 603–618.

    Google Scholar 

  23. Peers C. Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2+-activated K+ current. Neurosci. Lett. 1990; 119: 253–256.

    Article  CAS  PubMed  Google Scholar 

  24. Rustenbeck I, Dickel C, Herrmann C, and Grimmsmann T. Mitochondria present in excised patches from pancreatic B-cells may form microcompartments with ATP-dependent potassium channels. Biosci. Reports. 1999; 19:89–98.

    CAS  Google Scholar 

  25. Seidler FJ and Slotkin T. Adrenomedullary function in the neonatal rat: responses to acute hypoxia. J Physiol. 1985; 385: 1–16.

    Google Scholar 

  26. Seidler FJ and Slotkin TA. Ontogeny of adrenomedullary responses to hypoxia and hypoglycemia: role of splanchnic innervation. Brain Res. Bul. 1986; 16: 11–14.

    CAS  Google Scholar 

  27. Seidler FJ, Brown K, Smith PG, and Slotkin TA. Toxic effects of hypoxia on neonatal cardiac function in the rat: á-adrenergic mechanisms. Toxicol. Lett. 1987; 37: 79–84.

    Article  CAS  PubMed  Google Scholar 

  28. Slotkin TA and Seidler FJ. Adrenomedullary catecholamine release in the fetus and newborn: secretory mechanisms and their role in stress and survival. J. Devel. Physiol. 1988; 10: 1–16.

    CAS  Google Scholar 

  29. Sweeney M and Yuan JX-J. Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels. Resp. Physiol. 2000; 1: 40–48.

    CAS  Google Scholar 

  30. Takeuchi Y, Mochizuki-Oda N, Yamada H, Kurokawa K, and Watanabe Y. Nonneurogenic hypoxia sensitivity in rat adrenal slices. Biochem. Biophys. Res. Comm. 2001; 289: 51–56.

    Article  CAS  PubMed  Google Scholar 

  31. Thompson RJ and Nurse CA. Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells. J. Physiol. 1998; 512: 421–434.

    Article  CAS  PubMed  Google Scholar 

  32. Thompson RJ, Farragher SM, Cutz E, and Nurse CA. Developmental regulation of O2 sensing in neonatal adrenal chromaffin cells from wild-type and NADPH-oxidase-deficient mice. Pflugers Arch. 2002; 444: 539–548.

    Article  CAS  PubMed  Google Scholar 

  33. Thompson RJ, Jackson A, and Nurse CA. Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells. J. Physiol. 1997; 498: 503–510.

    CAS  PubMed  Google Scholar 

  34. Walters DV and Olver RE, The role of catecholamines in lung liquid absorption at birth. Pediatr. Res. 1978; 12: 239–242.

    CAS  PubMed  Google Scholar 

  35. Waypa G, Chandel N, and Schumacker P. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ. Res. 2001; 88: 1259–1266.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Thompson, R.J., Nurse, C.A. (2004). Oxygen Sensing by Adrenomedullary Chromaffin Cells. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_21

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics