Skip to main content

Hypoxic Pulmonary Vasoconstriction: Heterogeneity

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abman SH, Chatfield BA, Hall SL, and McMurtry IF. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am. J. Physiol. 1990; 259: H1921–H1927.

    CAS  PubMed  Google Scholar 

  2. Altemeier WA, Robertson HT, and Glenny RW. Pulmonary gas-exchange analysis by using simultaneous deposition of aerosolized and injected microspheres. J. Appl. Physiol. 1998; 85: 2344–2351.

    CAS  PubMed  Google Scholar 

  3. Al-Tinawi A, Krenz GS, Rickaby DA, Linehan JH, and Dawson CA. Influence of hypoxia and serotonin on small pulmonary vessels. J. Appl. Physiol. 1994; 76: 56–64.

    CAS  PubMed  Google Scholar 

  4. Anand IS, Prasad BAK, Chugh SS, Rao KRM, Cornfield DN, Milla CE, Singh N, Singh S, and Selvamurthy W. Effects of inhaled nitric oxide and oxygen in high-altitude pulmonary edema. Circulation 1998; 98: 2441–2445.

    CAS  PubMed  Google Scholar 

  5. Archer AL, Huang JMC, Reeve HL, Hampl V, Tolarová S, Michelakis E, and Weir EK. Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ. Res. 1996; 78: 431–442.

    CAS  PubMed  Google Scholar 

  6. Baboolal HA, Ichinose F, Ullrich R, Kawai N, Bloch KD, and Zapol WM. Reactive oxygen species scavengers attenuate endotoxin-induced impairment of hypoxic pulmonary vasconstriction in mice. Anesthesiology 2002; 97: 1227–1233.

    Article  CAS  PubMed  Google Scholar 

  7. Barer GR, Emery CJ, Bee D, and Wach RA. “Mechanisms of pulmonary hypertension: an overview.” In The Pulmonary Circulation in Health and Disease, Will JA, Dawson CA, Weir EK, and Buckner CK, eds. Orlando, FL: Academic Press, Inc., 1987, pp. 409–422.

    Google Scholar 

  8. Barer G, Emery C, Stewart A, Bee D, and Howard P. Endothelial control of the pulmonary circulation in normal and chronically hypoxic rats. J. Physiol. 1993; 463: 1–16.

    CAS  PubMed  Google Scholar 

  9. Berkov S. Hypoxic pulmonary vasoconstriction in the rat, the necessary role of angiotensin II. Circ. Res. 1974; 35:256–261.

    CAS  Google Scholar 

  10. Block ER, Herrera H, and Couch M. Hypoxia inhibits L-arginine uptake by pulmonary artery endothelial cells. Am. J. Physiol. 1995; 269: L574–L580.

    CAS  PubMed  Google Scholar 

  11. Busch T, Bartsch P, Pappert D, Grunig E, Hildebrandt W, Elser H, Falke KJ, and Swenson ER. Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. Am. J. Respir. Crit. Care Med. 2001; 163: 368–373.

    CAS  PubMed  Google Scholar 

  12. Chammas JH, Rickaby DA, Guarin M, Linehan JH, Hanger CC, and Dawson CA. Flow-induced vasodilation in the ferret lung. J. Appl. Physiol. 1997; 83:495–502.

    CAS  PubMed  Google Scholar 

  13. Chirpaz-Oddou MF, Favre-Juvin A, Flore P, Eterradossi J, Delaire M, Grimbert F, and Therminarias A. Nitric oxide response in exhaled air during an incremental exhaustive exercise. J. Appl. Physiol. 1997; 82: 1311–1318.

    CAS  PubMed  Google Scholar 

  14. Clough AV, Haworth ST, Ma W, and Dawson CA. Effects of hypoxia on pulmonary microvascular volume. Am. J. Physiol. Heart Circ. Physiol. 2000; 279: H1274–H1282.

    CAS  PubMed  Google Scholar 

  15. Dawson CA. Role of pulmonary vasomotion in the physiology of the lung. Physiol. Rev. 1984, 64: 544–616.

    CAS  PubMed  Google Scholar 

  16. Dawson CD, Krenz GS, and Linehan JH. “Complexity and Structure-Function relationships in the pulmonary arterial tree, Chapter 13.” In Lung Biology in Health and Disease. Complexity in Structure and Function of the Lung, Hlastala MP and Robertson HT, eds. New York, NY: Marcel Dekker, Inc., 1998, pp. 401–427.

    Google Scholar 

  17. Droma Y, Hanaoka M, Ota M, Katsuyama Y, Koizumi T, Fujimoto K, Kobayashi T, and Kubo K. Positive association of the endothelial nitric oxide synthase gene polymorphisms with high-altitude pulmonary edema. Circulation 2002; 106: 826–830.

    Article  CAS  PubMed  Google Scholar 

  18. Droma Y, Ri-Li G, Tanaka M, Koizumi T, Hanaoka M, Miyahara T, Yamaguchi S, Okada K, Yoshikawa S, Fujimoto K, Matsuzawa Y, Kubo K, Kobayashi T, and Sekiguchi M. Acute hypoxic pulmonary vascular response does not accompany plasma endothelin-1 elevation in subjects susceptible to high altitude pulmonary edema. Intern. Med. 1996; 35: 257–260.

    CAS  PubMed  Google Scholar 

  19. Duke HN. The site of action of anoxia on the pulmonary blood vessels of the cat. J. Physiol. 1954; 125: 373–382.

    CAS  PubMed  Google Scholar 

  20. Duplain H, Sartori C, Leipri M, Egli M, Allemann Y, Nicod P, and Scherrer U. Exhaled nitric oxide in high-altitude pulmonary edema. Role in the regulation ofpulmonary vascula tone and evidence for a role against inflammation. Am. J. Respir. Crit. Care Med. 2000; 162: 221–224.

    CAS  PubMed  Google Scholar 

  21. Duplain H, Vollenweider L, Delabays A, Nicod P, Bartsch P, Sherrer U. Augmented sympathetic activation during short-term hypoxia and high altitude exposure in subjects susceptible to high-altitude pulmonary edema. Circulation 1999; 99: 1713–1718.

    CAS  PubMed  Google Scholar 

  22. Eldridge MW, Podolsky A, Richardson RS, Johnson DH, Knight DR, Johnson EC, Hopkins SR, Michimata H, Grassi B, Feiner J, Kurdak SS, Bickler PE, Wagner PD, and Severinghaus JW. Pulmonary hemodynamic response to exercise in subjects with prior high-altitude pulmonary edema. J. Appl. Physiol. 1996; 81: 911–921.

    CAS  PubMed  Google Scholar 

  23. Emery CJ, Bee, D, and Barer GR. Mechanical properties and reactivity of vessels in isolated perfused lungs of chronically hypoxic rats. Clin. Sci. 1981; 61: 569–583.

    CAS  PubMed  Google Scholar 

  24. Fike CD and Hansen TN. Hypoxic vasoconstriction increases with postnatal age in lungs from newborn rabbits. Circ. Res. 1987; 60: 297–303.

    CAS  PubMed  Google Scholar 

  25. Fishman AP. Hypoxia on the pulmonary circulation: how and where it acts. Circ. Res. 1976; 38: 221–231.

    CAS  PubMed  Google Scholar 

  26. Glenny RW, Bernard S, Robertson HT, and Hlastala MP. Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J. Appl. Physiol. 1999; 86: 623–632.

    CAS  PubMed  Google Scholar 

  27. Glenny RW, Robertson HT, and Hlastala MP. Vasomotor tone does not affect perfusion heterogeneity of gas exchange in normal primate lungs during normoxia. J. Appl. Physiol. 2000; 89: 2263–2267.

    CAS  PubMed  Google Scholar 

  28. Gordon JB, Tod ML, Wetzel RC, McGeady ML, Adkinson NF Jr, and Sylvester JT. Agedependent effects of indomethacin on hypoxicvasoconstriction in neonatal lamb lungs. Pediatr. Res. 1988; 23: 580–584.

    CAS  PubMed  Google Scholar 

  29. Grant BJB. Effect of local pulmonary blood flow control on gas exchange theory. J. Appl. Physiol. 1982; 53: 1100–1109.

    CAS  PubMed  Google Scholar 

  30. Hackett PH, Roach RC, Hartig GS, Green ER, and Levine BD. The effect of vasodilators on pulmonary hemodynamics in high altitude pulmonary edema: a comparison. Int. J. Sports Med. 1992; 13: S68–71

    Google Scholar 

  31. Hakim TS. Flow-induced release of EDRF in the pulmonary vasculature: site of release and action. Am. J. Physiol. 1994; 267: H363–369.

    CAS  PubMed  Google Scholar 

  32. Hakim TS and Malik AB. Hypoxic vasoconstriction in blood and plasma perfused lungs. Respir. Physiol. 1988; 72: 109–121.

    CAS  PubMed  Google Scholar 

  33. Hanson WL, Boggs DF, Kay JM, Hofmeister SE, and Wagner WW Jr. Collateral ventilation and pulmonary arterial smooth muscle in the coati. J. Appl. Physiol. 1993; 74: 2219–2224.

    CAS  PubMed  Google Scholar 

  34. He L, Chang SW, de Montellano PO, Burke TJ, and Voelkel NF. Lung injury in Fischer but not Sprague-Dawley rats after short-term hyperoxia Am. J. Physiol. 1990; 259: L451–L458.

    CAS  PubMed  Google Scholar 

  35. Helgesen KG and Bjertnaes L. The effect ofketanserin on hypoxia-induced vasoconstriction in isolated lungs. Int J Microcirc Clin Exp 1986; 5: 65–72.

    CAS  PubMed  Google Scholar 

  36. Henderson KK, Wagner H, Favret F, Britton SL, Koch LG, Wagner PD, and Gonzalez NC. Determinants of maximal O2 uptake in rats selectively bred for endurance running capacity. J. Appl. Physiol. 2002; 93: 1265–1274.

    PubMed  Google Scholar 

  37. Hillier SC, Graham JA, Hanger CC, Godbey PS, Glenny RW, and Wagner WW. Hypoxic vasoconstriction in pulmonary arterioles and venules. J. Appl. Physiol. 1997; 82: 1084–1090.

    CAS  PubMed  Google Scholar 

  38. Hislop AA, Springall DR, Buttery LDK, Pollock JS, and Haworth SG. Abundance of endothelial nitric oxide synthase in newborn intrapulmonary arteries. Arch. Dis. Child Fetal Neonatal 1995; 73: 17–21.

    Google Scholar 

  39. Hultgren HN. High altitude pulmonary edema: hemodynamic aspects. Int. J. Sports Med. 1997; 18: 20–25.

    CAS  PubMed  Google Scholar 

  40. Hyman AL, Higashida RT, Spannhake EW, and Kadowitz PJ. Pulmonary vasoconstrictor responses to graded decreases in precapillary blood PO2 in intact-chest cat. J. Appl. Physiol. 1981; 51: 1009–1016.

    CAS  PubMed  Google Scholar 

  41. Ichinose F, Zapol WM, Sapirstein A, Ullrich R, Tager AM, Coggins K, Jones R, and Bloch KD. Attenuation of hypoxic pulmonary vasoconstriction by endotoxemia requires 5-lipoxygenase in mice. Circ. Res. 2001; 88: 832–838.

    CAS  PubMed  Google Scholar 

  42. Ide H, Nakano H, Ogasa T, Osanal S, Kikuchi K, and Iwamoto J. Regulation of pulmonary circulation by alveolar oxygen tension via airway nitric oxide. J. Appl. Physiol. 1999; 87: 1629–1636.

    CAS  PubMed  Google Scholar 

  43. Jensen KS, Micco AJ, Czartolomna J, Latham L, and Voelkel NF. Rapid onset of hypoxic vasoconstriction in isolated lungs. J. Appl. Physiol. 1992; 72: 2018–2023.

    CAS  PubMed  Google Scholar 

  44. Johnson LR, Rush JWE, Turk, JR, Price EM, and Laughlin MH. Short-term exercise training increases ACh-induced relaxation and eNOS protein in porcine pulmonary arteries. J. Appl. Physiol. 2001; 90: 1102–1110.

    CAS  PubMed  Google Scholar 

  45. Johnson W, Nohria A, Garrett L, Fang JC, and Igo J. Contribution of endothelin to pulmonary vascular tone under normoxic and hypoxic conditions. Am. J. Physiol. Heart Circ. Physiol. 2002; 283: H568–H575.

    CAS  PubMed  Google Scholar 

  46. Juranek I, Suzuki H, Yamamoto S. Affinities of various mammalian arachidonate lipoxygenases and cyclooxygenases for molecular oxygen as substrate. Biochim. Biophys. Acta 1999; 1436: 509–518.

    CAS  PubMed  Google Scholar 

  47. Kane DW, Tesauro T, Koizumi T, Gupta R, and Newman JH. Exercise-induced pulmonary vasoconstriction during combined blockade of nitric oxide synthase and beta adrenergic receptors. J. Clin. Invest. 1994; 93: 677–683.

    CAS  PubMed  Google Scholar 

  48. Kapanci Y, Costabella PM, Cerutti P, and Assimacopoulos A. Distribution and function of cytoskeletal proteins in lung cells with particular reference to “Contractile interstitial cells. Methods Achiev. Exp. Pathol. 1979; 9: 147–168.

    CAS  PubMed  Google Scholar 

  49. Kawashima A, Kubo K, Kobayashi T, and Sekiguchi M. Hemodynamic responses to acute hypoxia, hypobaria and exercise in subjects susceptible to high-altitude pulmonary edema. J. Appl. Physiol. 1989; 67: 1982–1989.

    CAS  PubMed  Google Scholar 

  50. Kay JM. “Pulmonary vasculature and experimental pulmonary hypertension in animals.” In The Pulmonary Circulation in Health and Disease, Will JA, Dawson CA, Weir EK, and Buckner CK, eds. Orlando, FL: Academic Press, Inc, 1987, pp. 41–56.

    Google Scholar 

  51. Konduri GG and Mattei J. Role of oxidative phosphorylation and ATP release in mediating birth-related pulmonary vasodilation in fetal lambs. Am. J. Physiol. Heart Circ. Physiol. 2002; 283: H1600–H1608.

    CAS  PubMed  Google Scholar 

  52. Krenz GS and Dawson CA. Flow and pressure distributions in vascular networks consisting of distensible vessels. Am. J. Physiol. Heart Circ. Physiol. 2003; 284: H2192–H2203.

    CAS  PubMed  Google Scholar 

  53. Landolt CC, Matthay MA, Albertine KH, Roos PJ, Wiener-Kronish JP, and Staub NC. Overperfusion, hypoxia, and increased pressure cause only hydrostatic pulmonary edema in anesthetized sheep. Circ. Res. 1983; 52: 335–341.

    CAS  PubMed  Google Scholar 

  54. LeCrass TD and McMurtry IF. Nitric oxide production in the hypoxic lung. Am. J. Physiol. Lung Cell Mol. Physiol. 2001; 280: L575–L582.

    Google Scholar 

  55. Leeman M, DeBeyl VZ, Delcroix M, and Naeije R. Effects of endogenous nitric oxide on pulmonary vascular tone in intact dogs. Am. J. Physiol. 1994; 266: H2343–H2347.

    CAS  PubMed  Google Scholar 

  56. Lejeune P, Vachiery JL, Leeman M, Brimioulle S, Hallemans R, Melot C, and Naeije R. Absence of parasympathetic control of pulmonary vascular pressure-flow plots in hyperoxic and hypoxic dogs. Respir. Physiol. 1989; 78: 123–133.

    Article  CAS  PubMed  Google Scholar 

  57. Liu Q, Sham SK, Shimoda LA, and Sylvester JT. Hypoxic constriction of porcine distal pulmonary arteries: endothelium and endothelin dependence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L856–L865.

    CAS  PubMed  Google Scholar 

  58. Lodato RF, Micael JR, and Murray PA. Absence of neural modulation of hypoxic pulmonary vasoconstriction in conscious dogs. J. Appl. Physiol. 1988; 65: 1481–1487.

    CAS  PubMed  Google Scholar 

  59. Madden J, Dawson CA, and Harder DA. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J. Appl. Physiol. 1985; 59: 113–118.

    CAS  PubMed  Google Scholar 

  60. Madden MC, Vender RL, and Friedman M. Effect of hypoxia on prostaglandin production in cultured pulmonary artery endothelium. Prostaglandins 1986; 31: 1049–1062.

    Article  CAS  PubMed  Google Scholar 

  61. Maggiorini M, Melot C, Pierre S, Pfeiffer F, Greve I, Sartori C, Lepori M, Hauser M, Scherrer U, and Naeije R. High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation 2001; 103: 2078–2083.

    CAS  PubMed  Google Scholar 

  62. Mann CM, Domino KB, Walther SM, Glenny RW, Polissar NL, and Hlastala MP. Redistribution of pulmonary blood flow during unilateral hypoxia in prone and supine dogs. J. Appl. Physiol. 1998; 84: 2010–2019.

    CAS  PubMed  Google Scholar 

  63. Marshall BE, Marshall C, Benumof J, and Saidman LJ. Hypoxic pulmonary vasoconstriction in dogs: effects of lung segment size and oxygen tension. J. Appl. Physiol. 1981; 51: 1543–1551.

    CAS  PubMed  Google Scholar 

  64. McMurtry IF, Hookway BW, and Roos SD. Red blood cells but not platelets prolong vascular reactivity of isolated rat lungs. Am. J. Physiol. 1978; 234: H186–H191.

    CAS  PubMed  Google Scholar 

  65. McMurtry IF, Petrun MD, and Reeves JT. Lungs from chronically hypoxic rats have decreased pressor response to acute hypoxia. Am. J. Physiol. 1978; 235: H104–H109.

    CAS  PubMed  Google Scholar 

  66. Melot C, Naeije R, Hallemans R, Lejeune P, and Mols P. Hypoxic pulmonary vasoconstriction and pulmonary gas exchange in normal man. Resp. Physiol. 1987; 68: 11–27.

    CAS  Google Scholar 

  67. Michel RP, Gordon JB, and Chu K. Development of the pulmonary vasculature in newborn lambs: structure-function relationships. J. Appl. Physiol. 1991; 70: 1255–1264.

    CAS  PubMed  Google Scholar 

  68. Nelin LD and Dawson CA. The effect of Nω-nitro-L-arginine methylester on hypoxic vasoconstriction in the neonatal pig lung. Pediatr. Res. 1993; 34: 349–353.

    CAS  PubMed  Google Scholar 

  69. Nelin LD, Thomas CJ, and Dawson CA. Effect of hypoxia on nitric oxide production in neonatal pigs. Am. J. Physiol. 1996; 271: H8–H14.

    CAS  PubMed  Google Scholar 

  70. North AJ, Brannon TS, Wells LB, Campbell WB, and Shaul PW. Hypoxia stimulates prostacyclin synthesis in newborn pulmonary artery endothelium by increasing cyclooxygenase-1 protein. Circ. Res. 1994; 75: 33–40.

    CAS  PubMed  Google Scholar 

  71. Ogasa T, Nakano H, Ide H, Yamamoto Y, Sasaki N, Osanai S, Akiba Y, Kikuchi K, and Iwamoto J. Flow-mediated release of nitric oxide in isolated perfused rabbit lungs. J. Appl. Physiol. 2001; 91: 363–370.

    CAS  PubMed  Google Scholar 

  72. Peake MD, Harabin AL, Brennan NJ, and Sylvester JT. Steady-state vascular responses to graded hypoxia in isolated lungs of five species. J. Appl. Physiol. 1981; 51: 1214–1219.

    CAS  PubMed  Google Scholar 

  73. Phillips CR, Giraud GD, and Holden WE. Exhaled nitric oxide during exercise: site of release and modulation by ventilation and blood flow. J. Appl. Physiol. 1996; 80: 1865–1871.

    CAS  PubMed  Google Scholar 

  74. Pison U, Lopez FA, Heidelmeyer CF, Rossaint R, and Falke KJ. Inhaled nitric oxide reverses hypoxic pulmonary vasoconstriction without impairing gas exchange. J. App. Physiol. 1993; 74: 1287–1292.

    CAS  Google Scholar 

  75. Reid LM. The pulmonary circulation: remodeling in growth and disease. Am. Rev. Respir. Dis. 1979; 119: 531–546.

    CAS  PubMed  Google Scholar 

  76. Rendas A, Branthwaite M, Lennod S, Reid L. Response of the pulmonary circulation to acute hypoxia in the growing pig. J. Appl. Physiol. 1982; 52: 811–814.

    CAS  PubMed  Google Scholar 

  77. Rengasamy A and Johns RA. Determination of Km for oxygen of nitric oxide synthase isoforms. J. Pharmacol. Exp. Ther. 1996; 276: 30–33.

    CAS  PubMed  Google Scholar 

  78. Salameh G, Karamsetty MR, Warburton RR, Klinger JR, Ou LC, and Hill NS. Differences in acute hypoxic pulmonary vasoresponsiveness between rat strains: role of endothelium. J. Appl. Physiol. 1999; 87: 356–362.

    CAS  PubMed  Google Scholar 

  79. Sartori C, Vollenweider L, Loffler BM, Delabays A, Nicod P, Bartsch P, and Scherrer U. Exaggerated endothelin release in high-altitude pulmonary edema. Circulation 1999; 99: 2665–2668.

    CAS  PubMed  Google Scholar 

  80. Schacterle RS, Adams JM, and Ribando RJ. A theoretical model of gas transport between arterioles and tissue. Microvasc. Res. 1991; 41: 210–228.

    Article  CAS  PubMed  Google Scholar 

  81. Scherrer U, Vollenweider L, Delabays A, Savcic M, Eichenberger U, Kleger G-R, Fikrle A, Ballmer PE, Nicod P, and Bartsch P. Inhaled nitric oxide for high-altitude pulmonary edema. N. Engl. J. Med. 1996; 334: 624–630.

    Article  CAS  PubMed  Google Scholar 

  82. Secomb TW and Pries AR. Information transfer in microvascular networks. Microcirculation 2002; 9: 377–387.

    PubMed  Google Scholar 

  83. Shirai M, Sada K, and Ninomiya I. Effects of regional alveolar hypoxia and hypercapnia in small pulmonary vessels in cats. J. Appl. Physiol. 1986; 61: 440–448.

    CAS  PubMed  Google Scholar 

  84. Shirai M, Shindo T, and Ninomiya I. β-adrenergic mechanisms attenuate hypoxic pulmonary vasoconstriction during systemic hypoxia in cats. Am. J. Physiol. 1994; 266: H1777–H1785.

    CAS  PubMed  Google Scholar 

  85. Sprague RS, Ellsworth ML, Stephenson AH, and Lonigro AJ. ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am. J. Physiol. 1996; 271: H2717–H2722.

    CAS  PubMed  Google Scholar 

  86. Sylvester, JT, Brower, RG, and Permutt, S. “Effects of hypoxic vasoconstriction on the mechanical interaction between pulmonary vessels and airways.” In The Pulmonary Circulation in Health and Disease, Will JA, Dawson CA, Weir EK, and Buckner CK, eds. New York, NY: Academic Press, 1987, pp. 321–334.

    Google Scholar 

  87. Torre-Buenoi JR, Wagner PD, Saltzman HA, Gale GE, and Moon RE. Diffusion limitation in normal humans during exercise at sea level and simulated altitude. J. Appl. Physiol. 1985; 58: 989–995.

    Google Scholar 

  88. Vadula MS, Kleinman JG, and Madden JA. Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am. J. Physiol. 1993; 265: L591–L597.

    CAS  PubMed  Google Scholar 

  89. Van Grondelle A, Worthen GS, Ellis D, Mathias MM, Murphy RC, Strife RJ, Reeves JT, and Voelkel NF. Altering hydrodynamic variables influences PGI2 production by isolated lungs and endothelial cells. J. Appl. Physiol. 1984; 57: 388–395.

    PubMed  Google Scholar 

  90. Von Euler US and Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand. 1946; 12: 301–320.

    Google Scholar 

  91. Yaghi A, Paterson NAM, and McCormack G. Nitric oxide does not mediate the attenuated pulmonary vascular reactivity of chronic pneumonia. Am. J. Physiol. 1993; 265: H943–H948.

    CAS  PubMed  Google Scholar 

  92. Yamaguchi K, Suzuki K, Naoki K, Nishio K, Sato N, Takeshita K, Kudo H, Aoki T, Suzuki Y, Miyata A, and Tsumura H. Response of intra-acinar pulmonary microvessels to hypoxia, hypercapnic acidosis, and isocapnic acidosis. Circ. Res. 1998; 82: 722–728.

    CAS  PubMed  Google Scholar 

  93. Zhu D, Birks EK, Dawson CA, Patel M, Falck JR, Presberg K, Roman, RJ, and Jacobs, ER. Hypoxic pulmonary vasoconstriction is modified by P-450 metabolites. Am. J. Physiol. Heart Circ. Physiol. 2000; 279: H1526–H1533.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dawson, C.A. (2004). Hypoxic Pulmonary Vasoconstriction: Heterogeneity. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics