Skip to main content

Endothelium-dependent Hypoxic Pulmonary Vasoconstriction

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

  • 119 Accesses

Summary

There is a growing consensus that HPV is multi-factorial in mechanism, and, in particular, that for HPV to develop fully and be sustained there needs to be both a rise in VSM [Ca2+], initiated by mechanisms intrinsic to the VSM cell, and a concomitant increase in VSM Ca2+ sensitivity induced by an endothelium-derived mediator. The precise identity of the hypoxic sensor, the effector mechanisms leading to the rise in [Ca2+], and the endothelium-derived mediator remain however controversial. In terms of endothelium-dependent HPV, there is now fairly strong evidence that the RhoA/Rho kinase pathway is central to the hypoxia-induced Ca2+ sensitization, though other protein kinases may also be involved. Although this provides a potential therapeutic target for alleviation of both the detrimental effects of acute HPV in critically ill hypoxic patients, and pulmonary hypertension associated with chronic hypoxic lung disease, development of an antagonist to the putative endothelium-derived mediator would be a greater prize. However, the mediator must first be identified, and as yet no known endothelium-derived mediator has yet to be unequivocally demonstrated as essential for sustained HPV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson PI, Robertson TP, and Ward JPT. Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir. Physiol. Neurobiol. 2002; 132: 107–120.

    Article  CAS  PubMed  Google Scholar 

  2. Ambalavanan N, Philips JB III, Bulger A, Oparil S, and Chen YF. Endothelin-A receptor blockade in porcine pulmonary hypertension. Pediatr. Res. 2002; 52: 913–921.

    Article  CAS  PubMed  Google Scholar 

  3. Barman SA. Effect of protein kinase C inhibition on hypoxic pulmonary vasoconstriction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L888–L895.

    CAS  PubMed  Google Scholar 

  4. Barnard JW, Barman SA, Adkins WK, Longenecker GL, and Taylor AE. Sustained effects of endothelin-1 on rabbit, dog, and rat pulmonary circulations. Am. J. Physiol. 1991; 261: H479–H486.

    CAS  PubMed  Google Scholar 

  5. Cassin S, Kristova V, Davis T, Kadowitz P, and Gause G. Tone-dependent responses to endothelin in the isolated perfused fetal sheep pulmonary circulation in situ. J. Appl. Physiol. 1991; 70: 1228–1234.

    CAS  PubMed  Google Scholar 

  6. Demiryurek AT, Wadsworth RM, Kane KA, and Peacock AJ. The role of endothelium in hypoxic constriction of human pulmonary artery rings. Am. Rev. Resp. Dis. 1993; 147: 283–290.

    CAS  PubMed  Google Scholar 

  7. Dipp M, Nye PC, and Evans AM. Hypoxic release of calciumfrom the sarcoplasmic reticulum of pulmonary artery smooth muscle.[comment]. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 281: L318–L325.

    CAS  PubMed  Google Scholar 

  8. Evans AM and Dipp M. Hypoxic pulmonary vasoconstriction: cyclic adenosine diphosphateribose, smooth muscle Ca2+ stores and the endothelium. Respir. Physiol. Neurobiol 2002; 132: 3–15.

    Article  CAS  PubMed  Google Scholar 

  9. Fishman AP. Hypoxia on the pulmonary circulation. How and where it acts. Circ. Res. 1976; 38: 221–231.

    CAS  PubMed  Google Scholar 

  10. Gaine SP, Hales MA, and Flavahan NA. Hypoxic pulmonary endothelial cells release a diffusible contractile factor distinct from endothelin. Am. J. Physiol. 1998; 274: L657–L664.

    CAS  PubMed  Google Scholar 

  11. Gelband CH and Gelband H. Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels. Circulation. 1997; 96: 3647–3654.

    CAS  PubMed  Google Scholar 

  12. Holden WE and McCall E. Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. Exp. Lung Res. 1984; 7: 101–112.

    CAS  PubMed  Google Scholar 

  13. Holm P, Liska J, Clozel M, and Franco-Cereceda A. The endothelin antagonist bosentan: hemodynamic effects during normoxia and hypoxic pulmonary hypertension in pigs. J. Thorac. Cardiovasc. Surg. 1996; 112: 890–897.

    CAS  PubMed  Google Scholar 

  14. Jacobs ER and Zeldin DC. The lung HETEs (and EETs) up. Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H1–H10.

    CAS  PubMed  Google Scholar 

  15. Johnson W, Nohria A, Garrett L, Fang JC, Igo J, Katai M, Ganz P, and Creager MA. Contribution of endothelin to pulmonary vascular tone under normoxic and hypoxic conditions. Am. J. Physiol. Heart Circ. Physiol. 2002; 283: H568–H575.

    CAS  PubMed  Google Scholar 

  16. Karamsetty MR, Klinger JR, and Hill NS. Evidence for the role of p38 MAP kinase in hypoxia-induced pulmonary vasoconstriction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 283: L859–L866.

    CAS  PubMed  Google Scholar 

  17. Kovitz KL, Aleskowitch TD, Sylvester JT, and Flavahan NA. Endothelium-derived contracting and relaxing factors contribute to hypoxic responses of pulmonary arteries. Am. J. Physiol. 1993; 265: H1139–48.

    CAS  PubMed  Google Scholar 

  18. Lazor R, Feihl F, Waeber B, Kucera P, and Perret C. Endothelin-1 does not mediate the endothelium-dependent hypoxic contractions of small pulmonary arteries in rats. Chest. 1996; 110: 189–197.

    CAS  PubMed  Google Scholar 

  19. Le Cras TD and McMurtry IF. Nitric oxide production in the hypoxic lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L575–L582.

    PubMed  Google Scholar 

  20. Leach RM, Hill HS, Snetkov VA, Robertson TP, and Ward JPT. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: Identity of the hypoxic sensor. J. Physiol. 2001; 536: 211–224.

    Article  CAS  PubMed  Google Scholar 

  21. Leach RM, Robertson TP, Twort CH, and Ward JPT. Hypoxic vasoconstriction in rat pulmonary and mesenteric arteries. Am. J. Physiol. 1994; 266: L223–L231.

    CAS  PubMed  Google Scholar 

  22. Liu Q, Sham JSK, Shimoda LA, and Sylvester JT. Hypoxic constriction of porcine distal pulmonary arteries: endothelium and endothelin dependence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L856–L865.

    CAS  PubMed  Google Scholar 

  23. MacLean MR and McCulloch KM. Influence of applied tension and nitric oxide on responses to endothelins in rat pulmonary resistance arteries: effect of chronic hypoxia. Br. J. Pharmacol. 1998; 123: 991–999.

    Article  CAS  PubMed  Google Scholar 

  24. Madden JA, Vadula MS, and Kurup VP. Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am. J. Physiol. 1992; 263: L384–L393.

    CAS  PubMed  Google Scholar 

  25. Ozaki M, Marshall C, Amaki Y, and Marshall BE. Role of wall tension in hypoxic responses of isolated rat pulmonary arteries. Am. J. Physiol. 1998; 19: L1069–L1077.

    Google Scholar 

  26. Robertson TP, Aaronson PI, and Ward JPT. Hypoxic vasoconstriction and intracellular Ca2+ in pulmonary arteries: Evidence for PKC-independent Ca2+ sensitization. Am. J. Physiol. 1995; 268: H301–H307.

    CAS  PubMed  Google Scholar 

  27. Robertson TP, Dipp M, Ward JPT, Aaronson PI, and Evans AM. Inhibition of sustained hypoxic vasoconstriction by Y-27632 in isolated intrapulmonary arteries and perfused lung of the rat. Br. J. Pharmacol. 2000; 131: 5–9.

    Article  CAS  PubMed  Google Scholar 

  28. Robertson TP, Hague DE, Aaronson PI, and Ward JPT. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J. Physiol 2000; 525: 669–680.

    Article  CAS  PubMed  Google Scholar 

  29. Robertson TP, Ward JPT, and Aaronson PI. Hypoxia induces the release of a pulmonary-selective, Ca2+-sensitising, vasoconstrictor from the perfused rat lung. Cardiovasc. Res. 2001; 50: 145–150.

    Article  CAS  PubMed  Google Scholar 

  30. Sato K, Morio Y, Morris KG, Rodman DM, and McMurtry IF. Mechanism of hypoxic pulmonary vasoconstriction involves ET A receptor-mediated inhibition of K ATP channel. Am. J. Physiol. Lung Cell. Mol Physiol. 2000; 278: L434–L442.

    CAS  PubMed  Google Scholar 

  31. Setoguchi H, Nishimura J, Hirano K, Takahashi S, and Kanaide H. Leukotriene C4 enhances the contraction of porcine tracheal smooth muscle through the activation of Y-27632, a rho kinase inhibitor, sensitive pathway. Br. J. Pharmacol. 2001; 132: 111–118.

    Article  CAS  PubMed  Google Scholar 

  32. Sham JSK, Crenshaw BR Jr., Deng L-H, Shimoda LA, and Sylvester JT. Effects of hypoxia in porcine pulmonary arterial myocytes: roles K v of channel and endothelin-1. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 279: L262–L272.

    CAS  PubMed  Google Scholar 

  33. Shimoda LA, Sylvester JT, and Sham JSK. Inhibition of voltage-gated K* current in rat intrapulmonary arterial myocytes by endothelin-1. Am. J. Physiol. 1998; 274: L842–L853.

    CAS  PubMed  Google Scholar 

  34. Somlyo AP, Wu X, Walker LA, and Somlyo AV. Pharmacomechanical coupling: the role of calcium, G-proteins, kinases and phosphatases. Rev. Physiol. Biochem. Pharmacol. 1999; 134: 201–234.

    CAS  PubMed  Google Scholar 

  35. Terraz S, Baechtold F, Renard D, Barsi A, Rosselet A, Gnaegi A, Liaudet, L, Lazor R, Haefliger JA, Schaad N, Perret C, Kucera P, Markert M, and Feihl F. Hypoxic contraction of small pulmonary arteries from normal and endotoxemic rats: fundamental role of NO. Am. J. Physiol. 1999; 276: H1207–H1214.

    CAS  PubMed  Google Scholar 

  36. Tseng CM, McGeady M, Privett T, Dunn A, and Sylvester JT. Does leukotriene C4 mediate hypoxic vasoconstriction in isolated ferret lungs? J. Appl. Physiol. 1990; 68: 253–259.

    CAS  PubMed  Google Scholar 

  37. Turner JL and Kozlowski RZ. Relationship between membrane potential, delayed rectifier K+ currents and hypoxia in rat pulmonary arterial myocytes. Exp. Physiol. 1997; 82: 629–645.

    CAS  PubMed  Google Scholar 

  38. Wang Z, Jin N, Ganguli S, Swartz DR, Li L, and Rhoades RA. Rho-kinase activation is involved in hypoxia-induced pulmonary vasoconstriction. Am. J. Resp. Cell. Mol. Biol. 2001; 25: 628–635.

    CAS  Google Scholar 

  39. Ward JPT and Aaronson PI. Mechanisms of hypoxic pulmonary vasoconstriction: Can anyone be right? Resp. Physiol. 1999; 115: 261–271.

    CAS  Google Scholar 

  40. Ward JPT and Robertson TP. The role of the endothelium in hypoxic pulmonary vasoconstriction. Exp. Physiol. 1995; 80: 793–801.

    CAS  PubMed  Google Scholar 

  41. Weissmann N, Seeger W, Conzen J, Kiss L, and Grimminger F. Effects of arachidonic acid metabolism on hypoxic vasoconstriction in rabbit lungs. Eur. J. Pharmacol. 1998; 356: 231–237.

    Article  CAS  PubMed  Google Scholar 

  42. Weissmann N, Voswinckel R, Hardebusch T, Rosseau S, Ghofrani HA, Schermuly R, Seeger W, and Grimminger F. Evidence for a role of protein kinase C in hypoxic pulmonary vasoconstriction. Am. J. Physiol. 1999; 20: L90–L95.

    Google Scholar 

  43. Yuan X-J, Tod ML, Rubin LJ, and Blaustein MP. Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am. J. Physiol. 1990; 259: H281–H289.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ward, J.P.T., Aaronson, P.I. (2004). Endothelium-dependent Hypoxic Pulmonary Vasoconstriction. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics