Skip to main content

Transient Receptor Potential Channels and Capacitative Ca2+ Entry in Hypoxic Pulmonary Vasoconstriction

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

  • 118 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert AP and Large WA. A Ca2+-permeable non-selective cation channel activated by depletion of internal Ca2+ stores in single rabbit portal vein myocytes. J. Physiol. 2002; 538: 717–728.

    Article  CAS  PubMed  Google Scholar 

  2. Albert AP and Large WA. Activation of store-operated channels by noradrenaline via protein kinase C in rabbit portal vein myocytes. J. Physiol. 2002; 544: 113–125.

    Article  CAS  PubMed  Google Scholar 

  3. Bolton TB. Mechanisms of action of transmitters and other substances on smooth muscle, Physiol Rev. 1979; 59: 606–718.

    CAS  PubMed  Google Scholar 

  4. Casteels R and Droogmans G. Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J. Physiol. 1981; 317: 263–279.

    CAS  PubMed  Google Scholar 

  5. Curtis TM and Scholfield CN. Nifedipine blocks Ca2+ store refilling through a pathway not involving L-type Ca2+ channels in rabbit arteriolar smooth muscle. J. Physiol. 2001; 532: 609–623.

    Article  CAS  PubMed  Google Scholar 

  6. Dipp M, Nye PCG, and Evans AM. Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 281: L318–L325.

    CAS  PubMed  Google Scholar 

  7. Doi S, Damron DS, Ogawa K, Tanaka S, Horibe M, and Murray PA. K+ channel inhibition, calcium signaling, and vasomotor tone in canine pulmonary artery smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 2000; 279: L242–L251.

    CAS  PubMed  Google Scholar 

  8. Evans AM and Dipp M. Hypoxic pulmonary vasoconstriction: cyclic adenosine diphosphateribose, smooth muscle Ca2+ stores and the endothelium. Resp. Physiol. Neurobiol. 2002; 132: 3–15.

    CAS  Google Scholar 

  9. Flemming R, Cheong A, Dedman AM, and Beech DJ. Discrete store-operated calcium influx into an intracellular compartment in rabbit arteriolar smooth muscle. J. Physiol. 2002; 543: 455–464.

    Article  CAS  PubMed  Google Scholar 

  10. Freichel M, Suh SH, and Pfeifer A. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/-mice. Nat. Cell Biol. 2001; 3: 121–127.

    Article  CAS  PubMed  Google Scholar 

  11. Gelband CH and Gelband H. Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels. Circulation. 1997; 96: 3647–3654.

    CAS  PubMed  Google Scholar 

  12. Goel M, Sinkins WG, and Schilling WP. Selective association of TRPC channel subunits in rat brain synaptosomes. J. Biol. Chem. 2002; 277: 48303–48310.

    CAS  PubMed  Google Scholar 

  13. Golovina VA. Cell proliferation is associated with enhanced capacitative Ca2+ entry in human arterial myocytes. Am. J. Physiol. 1999; 277: C343–C349.

    CAS  PubMed  Google Scholar 

  14. Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, and Yuan JX-J. Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H746–H755.

    CAS  PubMed  Google Scholar 

  15. Gonzalez De La Fuente P, Savineau JP, and Marthan R. Control of pulmonary vascular smooth muscle tone by sarcoplasmic reticulum Ca2+ pump blockers: thapsigargin and cyclopiazonic acid. Pflügers Arch. 1995; 429: 617–624.

    Article  CAS  PubMed  Google Scholar 

  16. Gurney AM and Allam M. Inhibition of calcium release from the sarcoplasmic reticulum of rabbit aorta by hydralazine. Br. J. Pharmacol. 1995; 114: 38–244.

    Google Scholar 

  17. Hardie RC and Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron. 1992; 8: 43–651.

    Article  Google Scholar 

  18. Hofmann T, Schaefer M, Schultz G, and Gudermann T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl. Acad. Sci. USA. 2001; 99: 7461–7466.

    Google Scholar 

  19. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, and Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999; 397: 259–263.

    CAS  PubMed  Google Scholar 

  20. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, and Mori Y. The transient receptor potential protein homologue TRP6 is the essential component of vascular 213-1 Ca2+-permeable cation channel. Circ. Res. 2001; 88: 325–332.

    Google Scholar 

  21. Jabr RI, Toland H, Gelband CH, Wang XX, and Hume JR. Prominent role of intracellular Ca2+ release in hypoxic vasoconstriction of canine pulmonary artery. Brit. J. Pharmacol. 1997; 122: 12–30.

    Google Scholar 

  22. Jin N, Packer CS, and Rhoades RA. Pulmonary arterial hypoxic contraction: signal transduction. Am. J. Physiol. 1992; 263: L73–L78.

    CAS  PubMed  Google Scholar 

  23. Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, and Groschner K. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol-and Ca2+-sensitive cation channels. J. Biol. Chem. 2000; 275: 27799–27805.

    CAS  PubMed  Google Scholar 

  24. McDaniel SS, Platoshyn O, Wang J, Yu Y, Sweeney M, Krick S, Rubin LJ, and Yuan JX-J. Capacitative Ca2+ entry in agonist-induced pulmonary vasoconstriction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L870–L880.

    CAS  PubMed  Google Scholar 

  25. McMurtry IF, Davidson AB, Reeves JT, and Grover RF. Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in islated rat lungs. Circ. Res. 1976; 38: 99–104.

    CAS  PubMed  Google Scholar 

  26. Minke B and Cook B. TRP channel proteins and signal transduction. Physiol. Rev. 2002; 82: 429–472.

    CAS  PubMed  Google Scholar 

  27. Ng LC and Gurney AM. Store-operated channels mediate Ca2+ influx and contraction in rat pulmonary artery. Circ. Res. 2001; 89: 923–929.

    CAS  PubMed  Google Scholar 

  28. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, and Mori Y. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protean-coupled receptor. J. Biol. Chem. 1999; 274: 27359–27370.

    CAS  PubMed  Google Scholar 

  29. Philipp S and Flockerzi V. Molecular characterization of a novel human PDZ domain protein with homology to INAD from Drosophila melanogaster. FEBS Lett. 1997; 413: 243–248.

    Article  CAS  PubMed  Google Scholar 

  30. Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, Davis JB, Benham CD, and Pangalos MN. Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. J. Biol. Chem. 2002; 277: 12302–12309.

    Article  CAS  PubMed  Google Scholar 

  31. Robertson TP, Aaronson PI, and Ward JPT. Ca2+-sensitization during sustained hypoxic pulmonary vasoconstrictionis endothelium-dependent. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003; 284: L1121–L1126.

    CAS  PubMed  Google Scholar 

  32. Robertson TP, Hague D, Aaronson PI, and Ward JPT. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J. Physiol. 2000; 525: 669–680.

    Article  CAS  PubMed  Google Scholar 

  33. Salvaterra CG and Goldman WF. Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am. J. Physiol. 1993; 264: L323–L328.

    CAS  PubMed  Google Scholar 

  34. Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, and Schultz G. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 2000; 275: 17517–17526.

    Article  CAS  PubMed  Google Scholar 

  35. Strübing C, Krapivinsky G, Krapivinsky L, and Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron. 2001; 29: 645–655.

    PubMed  Google Scholar 

  36. Suggett AJ, Mohammed FH, and Barer GR. Angiotensin, hypoxia, verapamil and pulmonary vessels. Clin. Exp. Pharmacol. Physiol. 1980; 7: 263–274.

    CAS  PubMed  Google Scholar 

  37. Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, and Yuan JX-J. Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 283: L144–L155.

    CAS  PubMed  Google Scholar 

  38. Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, Ramesh V, and Zhu MX. Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J. Biol. Chem. 2000; 275: 37559–37564.

    CAS  PubMed  Google Scholar 

  39. Trepakova ES, Gericke M, Hirakawa Y, Weisbrod RM, Cohen RA, and Bolotina VM. Properties of a native cation channel activated by Ca2+ store depletion in vascular smooth muscle cells. J. Biol. Chem. 2001; 276: 7782–7790.

    Article  CAS  PubMed  Google Scholar 

  40. Vadula MS, Kleinman JG, and Madden JA. Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am. J. Physiol. 1993; 265: L591–L597.

    CAS  PubMed  Google Scholar 

  41. Vandier C, Delpech M, Rebocho M, and Bonnet P. Hypoxia enhances agonist-induced pulmonary arterial contraction by increasing calcium sequestration. Am. J. Physiol. 1997; 273: H1075–H1081.

    CAS  PubMed  Google Scholar 

  42. Vazquez G, Wedel BJ, Trebak M, Bird GS, and Putney JW. Expression level of the canonical transient receptor potential (TRPC3) channel determines its mechanism of activation. J. Biol. Chem. 2003; 278: 21649–21654.

    Article  CAS  PubMed  Google Scholar 

  43. Vennekens R, Voets T, Bindels RJ, Droogmans G, and Nilius B. Current understanding of mammalian TRP homologues. Cell Calcium. 2002; 31: 253–264.

    Article  CAS  PubMed  Google Scholar 

  44. Walker RL, Hume JR, and Horowitz B. Differential expression and alternative splicing of TRP channel genes in smooth muscles. Am. J. Physiol. Cell Physiol. 2001; 280: C1184–C1192.

    CAS  PubMed  Google Scholar 

  45. Wang Y-X, Zheng Y-M, Abdullaev I, and Kotlikoff MI. Metabolic inhibition with cyanide induces calcium release in pulmonary artery myocytes and Xenopus oocytes. Am. J. Physiol. Cell Physiol. 2003; 284: C378–C388.

    CAS  PubMed  Google Scholar 

  46. Ward JPT and Aaronson PI. Mechanisms of hypoxic pulmonary vasoconstriction: can anyone be right? Respir. Physiol. 1999; 115: 261–271.

    Article  CAS  PubMed  Google Scholar 

  47. Welsh DG, Morielli AD, Nelson MT, and Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ. Res. 2002; 90: 248–250.

    Article  CAS  PubMed  Google Scholar 

  48. Wilson SM, Mason HS, Smith GD, Nicholson N, Johnston L, Janiak R, and Hume JR. Comparative capacitative calcium entry mechanisms in canine pulmonary and renal arterial smooth muscle cells. J. Physiol. 2002; 543: 917–931.

    Article  CAS  PubMed  Google Scholar 

  49. Xu SZ and Beech DJ. TrpC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ. Res. 2001; 88: 84–87.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gurney, A.M., Ng, LC. (2004). Transient Receptor Potential Channels and Capacitative Ca2+ Entry in Hypoxic Pulmonary Vasoconstriction. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_11

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics