Skip to main content

Hypoxic Regulation of K+ Channel Expression and Function in Pulmonary Artery Smooth Muscle Cells

  • Chapter
  • 117 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate C, Patel L, Rauscher FJ 3rd Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990; 24: 1157–1161.

    Google Scholar 

  2. Albert AP, and Large WA. Activation of store-operated channels by noradrenaline via protein kinase C in rabbit portal vein myocytes. J. Physiol. 2002; 544: 113–125.

    Article  CAS  PubMed  Google Scholar 

  3. Allbritton NL, Oancea E, Kugn MA, and Meyer T. Source of nuclear calcium signals. Proc. Natl Acad. Sci. U.S.A. 1994; 91: 12458–12462.

    CAS  PubMed  Google Scholar 

  4. An WF, Bowlby MR, Betty M, Cao J, Ling H-P, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ. Modulation of A-type potassium channels by a family of calcium sensors. Nature. 2000; 403: 553–556.

    CAS  PubMed  Google Scholar 

  5. Archer SL, Huang J, Henry T, Peterson D, Weir EK. A redox-based O2 sensor in rat pulmonary vasculature. Circ. Res. 1993; 73: 1100–1112.

    CAS  PubMed  Google Scholar 

  6. Bannister AJ, Cook A, Kouzarides T. In vitro DNA binding activity of Fos/Jun and BZLF1 but not C/EBP is affected by redox changes. Oncogene. 6: 1243–1250, 1991.

    CAS  PubMed  Google Scholar 

  7. Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR. Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. J. Biol. Chem. 2002; 277: 39728–39738.

    Article  CAS  PubMed  Google Scholar 

  8. Berridge MJ. Calcium signalling and cell proliferation. Bioessays. 1995; 17: 491–500.

    Article  CAS  PubMed  Google Scholar 

  9. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993; 361: 315–325.

    Article  CAS  PubMed  Google Scholar 

  10. Blaustein MP. Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am. J. Physiol. 1993; 264: C1367–C1387.

    CAS  PubMed  Google Scholar 

  11. Bortner CD, Hughes FM Jr, and Cidlowski JA. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. 1997; 272: 32436–32442.

    Article  CAS  PubMed  Google Scholar 

  12. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, and Snyder SH. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991; 351: 714–718.

    Article  CAS  PubMed  Google Scholar 

  13. Campbell WB, Gebremedhin D, Pratt PF, and Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ. Res. 1996; 78: 415–423.

    CAS  PubMed  Google Scholar 

  14. Chandy KG, and Gutman GA. Voltage-gated K+ channels. In Ligand-and Voltage-Gated Ion Channels, North RA, ed. 1995. Boca Raton, FL: CRC, pp. 1–71.

    Google Scholar 

  15. Chen G, and Cheung DW. Modulation of endothelium-dependent hyperpolarization and relaxation to acetylcholine in rat mesenteric artery by cytochrome P450 enzyme activity. Circ. Res. 1996; 79: 827–833.

    CAS  PubMed  Google Scholar 

  16. Clapp LH, Gurney AM, Standen NB, and Langton PD. Properties of the ATP-sensitive K+ current activated by levcromakalim in isolated pulmonary arterial myocytes. J. Membr. Biol. 1994; 140: 205–213.

    CAS  PubMed  Google Scholar 

  17. Coppock EA, Martens JR, and Tamkun MM. Molecular basis of hypoxia-induced pulmonary vasoconstriction: role of voltage-gated K+ channels. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 281: L1–L12.

    CAS  PubMed  Google Scholar 

  18. Coppock EA, and Tamkun MM. Differential expression of Kv channel α-and β-subunits in the bovine pulmonary arterial circulation. Am J. Physiol. Lung Cell. Mol. Physiol. 2001; 281: L1350–L1360.

    CAS  PubMed  Google Scholar 

  19. Davies AR, and Kozlowski RZ. Kv channel subunit expression in rat pulmonary arteries. Lung. 2001; 179: 147–161.

    Article  CAS  PubMed  Google Scholar 

  20. Dhulipala PDK, and Kotlikoff MI. Cloning and characterization of the promoters of the maxiK channel α and β subunits. Biochim Biophys Acta. 1444: 254–262 1999.

    CAS  PubMed  Google Scholar 

  21. Dipp M, Nye PCGm and Evans AM. Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 281: L318–L325.

    CAS  PubMed  Google Scholar 

  22. Ekhterae D, Platoshyn O, Krick S, Yu Y, McDaniel SS, and Yuan JX-J. Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 2001; 281: C157–C165.

    CAS  PubMed  Google Scholar 

  23. Evans AM, Clapp LH, and Gurney Am. Augmentation by intracellular ATP of the delayed rectifier current idependently of the glibenclamide-sensitive K-current in rabbit arterial myocytes. Br. J. Pharmacol. 1994; 111: 972–974.

    CAS  PubMed  Google Scholar 

  24. Fang X, Weintraub ML, Stoll LL, Spector AA. Epoxyeicosatrienoic acids increase intracellular calcium concentration in vascular smooth muscle cells. Hypertension. 1999; 34: 1242–1246.

    CAS  PubMed  Google Scholar 

  25. Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, and Yuan, JX-J. Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003; 10. 1152/ajplung.00445.2002.

    Google Scholar 

  26. Ginty DD. Calcium regulation of gene expression: isn’t that spatial? Neuron. 1997; 18: 183–186.

    Article  CAS  PubMed  Google Scholar 

  27. Golovina VA, and Blaustein MP. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science. 1997; 275: 1643–1648.

    Article  CAS  PubMed  Google Scholar 

  28. Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, and Yuan JX-J. Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H746–H755.

    CAS  PubMed  Google Scholar 

  29. Gurney AM, Osipenko ON, MacMillan D, and Kempsill FEJ. Potassium channels underlying the resting potential of pulmonary artery smooth muscle cells. Clin. Exp. Pharmacol. Physiol. 2002; 29: 330–333.

    Article  CAS  PubMed  Google Scholar 

  30. Harder DR, Narayanan J, Birks EK, Liard JF, Imig JD, Lombard JH, Lange AR, and Roman RJ. Identification of a putative microvascular oxygen sensor. Circ. Res. 1996; 79: 54–61.

    CAS  PubMed  Google Scholar 

  31. Hardingham GE, Chawla S, Johnson CM, and Bading H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature. 1997; 385: 260–265.

    Article  CAS  PubMed  Google Scholar 

  32. He H, Lam M, McCormick TS, and Distelhorst CW. Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J. Biol. Chem. 1997; 138: 1219–1228.

    CAS  Google Scholar 

  33. Hu S, and Kim HS. Activation of K+ channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid. Eur. J. Pharmacol. 1993; 230: 215–221.

    Article  CAS  PubMed  Google Scholar 

  34. Hughes FM.Jr, Bortner CD, Purdy GD, and Cidlowski JA. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem. 1997; 272: 30567–30576.

    CAS  PubMed  Google Scholar 

  35. Hulme JT, Coppock EA, Felipe A, Martens JR, and Tamkun MM. Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature. Circ. Res. 1999; 85; 489–497.

    CAS  PubMed  Google Scholar 

  36. Ishida Y, and Paul RJ. Effects of hypoxia on high-energy phosphagen content, energy metabolism and isometric force in guinea-pig taenia caeci. J. Physiol. 1990; 424: 41–56.

    CAS  PubMed  Google Scholar 

  37. Krick S, Platoshyn O, McDaniel SS, Rubin LJ, and Yuan JX-J. Augmented K+ currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 281: L887–L894.

    CAS  PubMed  Google Scholar 

  38. Krick S, Platoshyn O, Sweeney M, Kim H, Yuan JX-J. Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 2001; 280: C970–C979.

    CAS  PubMed  Google Scholar 

  39. Kuryshev YA, Gudz TI, Brown AM, Wible BA. KChAP as a chaperone for specific K+ channels. Am. J. Physiol. Cell Physiol. 2000; 278: C931–C941.

    CAS  PubMed  Google Scholar 

  40. Kuryshev YA, Wible BA, Gudz TI, Ramirez AN, Brown AM. KChAP/Kvβ1,2 interactions and their effects on cardiac Kv channel expression. Am. J. Physiol. Cell Physiol. 2001; 281: C290–299.

    CAS  PubMed  Google Scholar 

  41. Lang F, Lepple-Wienhues A, Paulmichl M, Szabó I, Siemen D, and Gulbins E. Ion channels, cell volume, and apoptotic cell death. Cell. Physiol. Biochem. 1998; 8: 285–292.

    CAS  PubMed  Google Scholar 

  42. Lee S, Park M, So I, and Earm YE. NADH and NAD modulates Ca2+-activated K+ channels in small pulmonary arterial smooth muscle cells of the rabbit. Pflügers Arch. 1994; 427: 378–380.

    CAS  PubMed  Google Scholar 

  43. Lesage F, and Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. Renal Physiol. 2000; 279: F793–F801.

    CAS  PubMed  Google Scholar 

  44. López-Barneo J. Oxygen-sensing by ion channel and the regulation of cellular functions. Trends Neurosci. 1996; 19: 435–440.

    PubMed  Google Scholar 

  45. Madden JA, Ray DE, Keller PA, and Kleinman JG. Ion exchange activity in pulmonary artery smooth muscle cells: the response to hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L264–L271.

    CAS  PubMed  Google Scholar 

  46. Madden JA, Vadula KS, and Kurup VP. Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am. J. Physiol. 1992; 263: L384–L393.

    CAS  PubMed  Google Scholar 

  47. Maeno E, Ishizaki Y, Kanaseki T, Akihiro H, and Okada Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl Acad. Sci. U.S.A. 2000; 97: 9487–9492.

    Article  CAS  PubMed  Google Scholar 

  48. Martel J, Dupuis G, Deschênes P, and Payet MD. The sensitivity of the human Kv1.3 (hKv1.3) lymphocyte K+ channel to regulation by PKA and PKC is partially lost in HEK 203 host cells. J. Membr. Biol. 1998; 161: 183–196.

    Article  CAS  PubMed  Google Scholar 

  49. Martens JR; Kwak Y-G, and Tamkun MM. Modulation of Kv channel α/β subunit interactions. Trends Cardiovasc. Med. 1999; 9: 253–258.

    Article  CAS  PubMed  Google Scholar 

  50. Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, and Tamkun MM. Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J. Biol. Chem. 2001; 276: 8409–8414.

    Article  CAS  PubMed  Google Scholar 

  51. McCormack T, McCormack K. Shaker K+ channel β subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell. 1994; 79: 1133–1135.

    Article  CAS  PubMed  Google Scholar 

  52. McDaniel SS, Platoshyn O, Wang J, Yu Y, Sweeney M, Krick S, Rubin LJ, and Yuan JX-J. Capacitative Ca2+ entry in agonist-induced pulmonary vasoconstriction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L870–L880.

    CAS  PubMed  Google Scholar 

  53. McMurtry IF, Davidson AB, Reeves JT, Grover RF. Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ. Res. 1976; 38: 99–104.

    CAS  PubMed  Google Scholar 

  54. McMurtry IF, Petrun MD, and Reeves JT. Lungs from chronically hypoxic rats have decreased pressor response to acute hypoxia. Am. J. Physiol. 1978; 235: H104–H109.

    CAS  PubMed  Google Scholar 

  55. Michiels C, Minet E. Michel G, Mottet D, Piret J-P, Raes M. HIF-1 and AP-1 cooperate to increase gene expression in hypoxia: Role of MAP kinases. IUBMB Life. 52: 49–53, 2001.

    CAS  PubMed  Google Scholar 

  56. Miller MA, and Hales CA. Role of cytochrome P-450 in alveolar hypoxic pulmonary vasoconstriction in dogs. J. Clin. Invest. 1979; 64: 666–673.

    CAS  PubMed  Google Scholar 

  57. Morgan KG. Calcium and vascular smooth muscle tone. Am. J. Med. 1987; 82: 9–15.

    Article  CAS  PubMed  Google Scholar 

  58. Mori Y, Folco E, and Koren G. GH3 cell-specific expression of Kv1.5 gene. Regulation by a silencer containing a dinucleotide repetitive element. J. Biol. Chem. 270: 27788–27796, 1995.

    Article  CAS  PubMed  Google Scholar 

  59. Murray TR, Chen L, Marshall BE, Macarak EJ. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells. Am. J. Respir. Cell. Mol. Biol. 1990; 3: 457–465.

    CAS  PubMed  Google Scholar 

  60. Nelson MT, Patlak JB, Worley JF, and Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am. J. Physiol. 1990; 259: C3–C18.

    CAS  PubMed  Google Scholar 

  61. Nelson MT, and Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 1995; 268: C799–C822.

    CAS  PubMed  Google Scholar 

  62. Okamoto T, Schlegel A, Scherer PE, Lisanti MP. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 1998; 273: 5419–5422.

    CAS  PubMed  Google Scholar 

  63. Osipenko ON, Evans AM, Gurney AM. Regulation of the resting membrane potential of rabbit pulmonary artery myocytes by a low threshold, O2-sensing potassium current. Br. J. Pharmacol. 1997; 120: 1461–1470.

    CAS  PubMed  Google Scholar 

  64. Osipenko ON, Tate RJ, and Gurney AM. Potential role for Kv3.1b channels as oxygen sensors. Circ. Res. 2000; 86: 534–540.

    CAS  PubMed  Google Scholar 

  65. Ostrom RS, Insel PA. Caveolar microdomains of the sarcolemma: compartmentation of signaling molecules comes of age [editorial]. Circ. Res. 1999; 84: 1110–1112.

    CAS  PubMed  Google Scholar 

  66. Ottschytsch N, Raes A, Van Hoorick D, and Snyders DJ. Obligatory heterotetramerization of three previously uncharacterized Kv channel α subunits identified in the human genome. Proc. Natl Acad. Sci. U.S.A. 2002; 99: 7986–7991.

    Article  CAS  PubMed  Google Scholar 

  67. Parekh AB, and Penner R. Store depletion and calcium influx. Physiol. Rev. 1997; 77: 901–930.

    CAS  PubMed  Google Scholar 

  68. Park MK, and Lee SH, Lee SJ, Ho W-K, and Earm YE. Different modulation of Ca-activated K channels by the intracellular redox potential in pulmonary and ear arterial smooth muscle cells of the rabbit. Pflügers Arch. 1995; 430: 308–314.

    Article  CAS  PubMed  Google Scholar 

  69. Patel AJ, and Honoré E. Molecular physiology of oxygen-sensitive potassium channels. Eur. Respir. J. 2001; 18: 221–227.

    Article  CAS  PubMed  Google Scholar 

  70. Patel AJ, Lazdunski M, and Honoré E. Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J. 1997; 16: 6615–6625.

    Article  CAS  PubMed  Google Scholar 

  71. Patel HH, Fryer RM, Gross ER, Bundey RA, Hsu AK, Isbell M, Eusebi LOV, Jensen RV, Gullans SR, Insel PA, Nithipatikom K, Gross GJ. 12-Lipoxygenase in opioid-induced delayed cardioprotection: gene array, mass spectrometric, and pharmacological analyses. Circ. Res. 2003; 92: 676–682.

    Article  CAS  PubMed  Google Scholar 

  72. Patel SP, Campbell DL, Strauss HC. Elucidating KChIP effects on Kv4.3 inactivation and recovery kinetics with a minimal KChIP2 isoform. J. Physiol. 2002; 545: 5–11.

    Article  CAS  PubMed  Google Scholar 

  73. Pauly RR, Bilato C, Sollott SJ, Monticone R, Kelly PT, Lakatta EG, and Crow MT. Role of calcium/calmodulin-dependent protein kinase II in the regulation of vascular smooth muscle cell migration. Circulation. 1995; 91: 1107–1115.

    CAS  PubMed  Google Scholar 

  74. Peng W, Hoidal JR, and Farrukh IS. Role of a novel KCa opener in regulating K+ channels of hypoxic human pulmonary vascular cells. Am. J. Respir. Cell. Mol. Biol. 1999; 20: 737–745.

    CAS  PubMed  Google Scholar 

  75. Peng W, Hoidal JR, Karwande SV, and Farrukh IS. Effect of chronic hypoxia on K+ channels: regulation in human pulmonary vascular smooth muscle cells. Am. J. Physiol. 1997; 272: C1271–C1278.

    CAS  PubMed  Google Scholar 

  76. Pérez-García MT, López-López JR, González C. Kvβ1,2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not Shaker channels. J Gen Physiol. 1999; 113: 897–907.

    PubMed  Google Scholar 

  77. Pike LJ, Han X, Chung K-N, Gross RW. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry. 2002; 41: 2075–2088.

    CAS  PubMed  Google Scholar 

  78. Platoshyn O, Golovina VA, Bailey CL, Limsuwan A, Krick S, Juhaszova M, Seiden JE, Rubin LJ, and Yuan JX-J. Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. Cell Physiol. 279: C1540–C1549, 2000.

    CAS  PubMed  Google Scholar 

  79. Platoshyn O, Mandegar M, Yu Y, Golovina VA, Zhang S, Thistlethwaite PA, and Yuan JX-J. Functional ion channels in human pulmonary artery smooth muscle cells. Biophys. J. 82: 249a, 2002.

    Google Scholar 

  80. Platoshyn O, Yu Y, Golovina VA, McDaniel SS, Krick S, Li L, Wang JY, Rubin LJ, and Yuan JX-J. Chronic hypoxia decreases Kv channel expression and function in pulmonary artery myocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L801–L812.

    CAS  PubMed  Google Scholar 

  81. Platoshyn O, Zhang S, McDaniel SS, and Yuan JX-J. Cytochrome c activates K+ channels before inducing apoptosis. Am. J. Physiol. Cell Physiol. 2002; 283: C1298–C1305.

    CAS  PubMed  Google Scholar 

  82. Post JM, Gelband CH, and Hume JR. [Ca2+]i inhibition of K+ channels in canine pulmonary artery. Novel mechanism for hypoxia-induced membrane depolarization. Circ. Res. 1995; 77: 131–139.

    CAS  PubMed  Google Scholar 

  83. Post JM, Hume JR, Archer SL, Weir EK. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol Cell Physiol. 1992; 262: C882–C890.

    CAS  Google Scholar 

  84. Rabinovitch M. Pathobiology of pulmonary hypertension. Extracellular matrix. Clin. Chest Med. 2001; 22: 433–439.

    Article  CAS  PubMed  Google Scholar 

  85. Remillard CV, and Yuan JX-J. Activation of K+ channels: an essential pathway in programmed cell death. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003; in press..

    Google Scholar 

  86. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature. 1994; 369: 289–294.

    Article  CAS  PubMed  Google Scholar 

  87. Revtyak GE, Buja LM, Chien KR, Campbell WB. Reduced arachidonate metabolism in ATP-depleted myocardial cells occurs early in cell injury. Am. J. Physiol. Heart Circ. Physiol. 1990; 259: H582–H591.

    CAS  Google Scholar 

  88. Robertson B. The real life of voltage-gated K+ channels: more than model behaviour. Trends Physiol. Sci. 1997; 18: 474–483.

    CAS  Google Scholar 

  89. Robertson TP, Hague D, Aaronson PI, Ward JPT. Voltage-independent calciumentry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J. Physiol. 2000; 525: 669–680.

    Article  CAS  PubMed  Google Scholar 

  90. Rounds S, and McMurtry IF. Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs. Circ. Res. 1981; 48: 393–400.

    CAS  PubMed  Google Scholar 

  91. Sano Y, Mochizuki S, Miyake A, Kitada C, Inamura K, Yokoi H, Nozawa K, Matsushime H, and Furuichi K. Molecular cloning and characterization of Kv6.3, a novel modulatory subunit for voltage-gated K+ channel Kv2.1. FEBS Lett. 2002; 512: 230–234.

    Article  CAS  PubMed  Google Scholar 

  92. Semenza GL. Oxygen-regulated transcription factors and their role in pulmonary disease. Respir. Res. 1: 159–162, 2000.

    Article  CAS  PubMed  Google Scholar 

  93. Shimoda LA, Sylvester JT, and Sham JSK. Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1. Am. J. Physiol. 1998; 274: L842–L853.

    CAS  PubMed  Google Scholar 

  94. Short AD, Bian J, Ghosh TK, Waldron RT, Rybak SL, and Gill DL. Intracellular Ca2+ pool content is linked to control of cell growth. Proc. Natl Acad. Sci. U.S.A. 1993; 90: 4986–4990.

    CAS  PubMed  Google Scholar 

  95. Smirnov SV, Robertson TP, Ward JPT, and Aaronson PI. Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary artery muscle cells. Am. J. Physiol. 1994; 266: H365–H370.

    CAS  PubMed  Google Scholar 

  96. Somlyo AP, and Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994; 372: 231–236.

    Article  CAS  PubMed  Google Scholar 

  97. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 1996; 271: 15160–15165.

    CAS  PubMed  Google Scholar 

  98. Stanbrook HS, and McMurtry IF. Inhibition of glycolysis potentiates hypoxic vasoconstriction in lungs. J. Appl. Physiol. 1983; 55: 1467–1473.

    CAS  PubMed  Google Scholar 

  99. Stenmark KR, and Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu. Rev. Physiol. 1997: 59: 89–144.

    Article  CAS  PubMed  Google Scholar 

  100. Sweeney M, and Yuan JX-J. Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels. Respir. Res. 2000; 1: 40–48.

    Article  CAS  PubMed  Google Scholar 

  101. Sylvester JT, and McGowan C. The effects of agents that bind to cytochrome P-450 on hypoxic pulmonary vasoconstriction. Circ. Res. 1978; 43: 429–437.

    CAS  PubMed  Google Scholar 

  102. Tamayo L, López-López JR, Castañeda J, and González C. Carbon monoxide inhibits hypoxic pulmonary vasoconstriction in rats by a cGMP-independent mechanism. Pflügers Arch. 1997; 434: 698–704.

    Article  CAS  PubMed  Google Scholar 

  103. Thornberry NA, and Lazebnik Y. Caspases: enemies within. Science. 1998; 281: 1312–1316.

    Article  CAS  PubMed  Google Scholar 

  104. Valverde P, and Koren G. Purification and preliminary characterization of a cardiac Kv1.5 represser element binding factor. Circ. Res. 1999; 84: 937–944.

    CAS  PubMed  Google Scholar 

  105. Wang J, Juhaszova M, Rubin LJ, Yuan JX-J. Hypoxia inhibits gene expression of voltage-gated K+ channel α subunits in pulmonary artery smooth muscle cells. J. Clin. Invest. 1997; 100: 2347–2353.

    CAS  PubMed  Google Scholar 

  106. Waypa GB, Chandel NS, and Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ. Res. 2001; 88: 1259–1266.

    CAS  PubMed  Google Scholar 

  107. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, and Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ. Res. 2002; 91: 719–726.

    Article  CAS  PubMed  Google Scholar 

  108. Weir EK, Wyatt CN, Reeve HL, Huang J, Archer SL, and Peers C. Diphenyleneiodonium inhibits both potassium and calcium currents in isolated pulmonary artery smooth muscle cells. J. Appl. Physiol. 1994; 76: 2611–2615.

    CAS  PubMed  Google Scholar 

  109. White KA, and Marletta MA. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry. 1992; 31: 6627–6631.

    CAS  PubMed  Google Scholar 

  110. Wyatt CN, Wright C, Bee D, and Peers C. O2-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction. Proc. Natl Acad. Sci. U.S.A. 1995; 92: 295–299.

    CAS  PubMed  Google Scholar 

  111. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JSK, Wiener CM, Sylvester JT, and Semenza GL. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1?. J. Clin. Invest. 1999; 103: 691–696.

    CAS  PubMed  Google Scholar 

  112. Yu SP, and Choi DW. Ions, cell volume, and apoptosis. Proc. Natl Acad. Sci. U.S.A. 2000; 97: 9360–9362.

    CAS  PubMed  Google Scholar 

  113. Yu Y, Platoshyn O, Zhang J, Krick S, Zhao Y, Rubin LJ, Rothman A, and Yuan JX-J. c-Jun decreases voltage-gated K+ channel activity in pulmonary artery smooth muscle cells. Circulation. 2001; 104: 1557–1563.

    CAS  PubMed  Google Scholar 

  114. Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, and Yuan JX-J. PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am. J. Physiol. Cell Physiol. 2003; 284: C316–C330.

    CAS  PubMed  Google Scholar 

  115. Yuan JX-J. Voltage-gated K+ currents regulate resting membrane potential and [Ca2+] in pulmonary arterial myocytes. Circ. Res. 1995; 77: 370–378.

    CAS  PubMed  Google Scholar 

  116. Yuan X-J. Mechanisms of hypoxic pulmonary vasoconstriction: The role of oxygen-sensing voltage-gated potassium channels. In Oxygen Regulation of Ion Channels and Gene Expression, López-Barneo J and Weir EK, eds. Armonk, NY: Futura Publishing Company, Inc., 1998, pp. 207–233.

    Google Scholar 

  117. Yuan X-J, Goldman WF, Tod ML, Rubin LJ, Blaustein MP. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am. J. Physiol. 1993; 264: L116–L123.

    CAS  PubMed  Google Scholar 

  118. Yuan X-J, Salvaterra CG, Tod ML, Juhaszova M, Goldman WF, Rubin LJ, and Blaustein MP. The sodium gradient, potassium channels, and regulation of calcium in pulmonary and mesenteric arterial smooth muscles: effect of hypoxia. In Ion Flux in Pulmonary Vascular Control, Weir EK, Hume JR, and Reeves JT, eds. New York, NY: Plenum Publishers, 1993, pp. 205–222.

    Google Scholar 

  119. Yuan X-J, Sugiyama T, Goldman WF, Rubin LJ, and Blaustein MP. A mitochondrial uncoupler increases KCa currents but decreases Kv currents in pulmonary artery myocytes. Am. J. Physiol. 1996; 270: C321–C331.

    CAS  PubMed  Google Scholar 

  120. Yuan X-J, Tod ML, Rubin LJ, Blaustein MP. Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am. J. Physiol. Heart Circ. Physiol. 1990; 259: H281–H289.

    CAS  Google Scholar 

  121. Yuan X-J, Tod ML, Rubin LJ, and Blaustein MP. Deoxyglucose and reduced glutathione mimic effects of hypoxia on K+ and Ca2+ conductances in pulmonary artery cells. Am. J. Physiol. 1994; 267: L52–L63.

    CAS  PubMed  Google Scholar 

  122. Yuan X-J, Tod ML, Rubin LJ, and Blaustein MP. Hypoxic and metabolic regulation of voltage-gated K+ channels in rat pulmonary artery smooth muscle cells. Exp. Physiol. 1995; 80: 803–813.

    CAS  PubMed  Google Scholar 

  123. Yuan X-J, Tod ML, Rubin LJ, and Blaustein MP. Inhibition of cytochrome P-450 reduces voltage-gated K+ currents in pulmonary arterial myocytes. Am. J. Physiol. 1995; 268: C259–C270.

    CAS  PubMed  Google Scholar 

  124. Yuan X-J, Tod ML, Rubin LJ, and Blaustein MP. NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels. Proc. Natl Acad. Sci. U.S.A. 1996; 93: 10489–10494.

    CAS  PubMed  Google Scholar 

  125. Yuan X-J, Wang J, Juhaszova M, Golovina VA, and Rubin LJ. Molecular basis and function of voltage-gated K+ channels in pulmonary artery smooth muscle cells. Am. J. Physiol. 1998; 274: L621–L635.

    CAS  PubMed  Google Scholar 

  126. Zhang F, Carson RC, Zhang H, Gibson G, and Thomas HM 3rd, Pulmonary artery smooth muscle cell [Ca2+], and contraction: responses to diphenyleneiodonium and hypoxia. Am. J. Physiol. 1997; 273: L603–L611.

    CAS  PubMed  Google Scholar 

  127. Zhang X, Wrzeszczynska MH, Horvath CM, and Darnell JE Jr. Interacting regions in Stat3 and c-Jun that participiate in cooperative transcriptional activation. Mol. Cell. Biol. 1999; 19: 7138–7146.

    CAS  PubMed  Google Scholar 

  128. Zhao Y-Y, Liu Y, Stan R-V, Fan L, Gu Y, Dalton N, Chu P-H, Peterson K, Ross J, Jr., Chien KR. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 11375–11380.

    CAS  PubMed  Google Scholar 

  129. Zhu X-R, Netzer R, Bohlke K, Liu Q, and Pongs O. Structural and functional characterization of Kv6.2, a new γ-subunit of voltage-gated potassium channel. Receptor Channels. 1999; 6: 337–350.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Patel, H.H., Remillard, C.V., Yuan, J.X.J. (2004). Hypoxic Regulation of K+ Channel Expression and Function in Pulmonary Artery Smooth Muscle Cells. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics